Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acquired Traits Can Be Inherited Via Small RNAs

06.12.2011
Columbia University Medical Center (CUMC) researchers have found the first direct evidence that an acquired trait can be inherited without any DNA involvement. The findings suggest that Lamarck, whose theory of evolution was eclipsed by Darwin’s, may not have been entirely wrong. The study is slated to appear in the December 9 issue of Cell.

“In our study, roundworms that developed resistance to a virus were able to pass along that immunity to their progeny for many consecutive generations,” reported lead author Oded Rechavi, PhD, associate research scientist in biochemistry and molecular biophysics at CUMC. “The immunity was transferred in the form of small viral-silencing agents called viRNAs, working independently of the organism’s genome.”

In an early theory of evolution, Jean Baptiste Larmarck (1744-1829) proposed that species evolve when individuals adapt to their environment and transmit those acquired traits to their offspring. For example, giraffes developed elongated long necks as they stretched to feed on the leaves of high trees, an acquired advantage that was inherited by subsequent generations. In contrast, Charles Darwin (1809-1882) later theorized that random mutations that offer an organism a competitive advantage drive a species’ evolution. In the case of the giraffe, individuals that happened to have slightly longer necks had a better chance of securing food and thus were able to have more offspring. The subsequent discovery of hereditary genetics supported Darwin’s theory, and Lamarck’s ideas faded into obscurity.

However, some evidence suggests that acquired traits can be inherited. “The classic example is the Dutch famine of World War II,” said Dr. Rechavi. “Starving mothers who gave birth during the famine had children who were more susceptible to obesity and other metabolic disorders — and so were their grandchildren.” Controlled experiments have shown similar results, including a recent study in rats demonstrating that chronic high-fat diets in fathers result in obesity in their female offspring.

Nevertheless, Lamarckian inheritance has remained controversial, and no one has been able to describe a plausible biological mechanism, according to study leader Oliver Hobert, PhD, professor of biochemistry and molecular biophysics and a Howard Hughes Medical Institute Investigator at CUMC.

Dr. Hobert suspected that RNA interference (RNAi) might be involved in the inheritance of acquired traits. RNAi is a natural process that cells use to turn down, or silence, specific genes. It is commonly employed by organisms to fend off viruses and other genomic parasites. RNAi works by destroying mRNA, the molecular messengers that carry information coded in a gene to the cell’s protein-making machinery. Without its mRNA, a gene is essentially inactive.

RNAi is triggered by doubled-stranded RNA (dsRNA), which is not found in healthy cells. When dsRNA molecules (for example, from a virus) enter a cell, they are sliced into small fragments, which guide the cell’s RNAi machinery to find mRNAs that match the genetic sequence of the fragments. The machinery then degrades these mRNAs, in effect destroying their messages and silencing the corresponding gene.

RNAi can be also triggered artificially by administering exogenous (externally derived) dsRNA. Intriguingly, the resultant gene-silencing occurs not only in the treated animal, but also in its offspring. However, it was not clear whether this effect is due to the inheritance of RNAs or to changes in the organism’s genome — or whether this effect has any biological relevance.

To look further into these phenomena, the CUMC researchers turned to the roundworm (C. elegans). The roundworm has an unusual ability to fight viruses, which it does using RNAi.

In the current study, the researchers infected roundworms with Flock House virus (the only virus known to infect C. elegans) and then bred the worms in such a way that some of their progeny had nonfunctional RNAi machinery. When those progeny were exposed to the virus, they were still able to defend themselves. “We followed the worms for more than one hundred generations — close to a year — and the effect still persisted,” said Dr. Rechavi.

The experiments were designed so that the worms could not have acquired viral resistance through genetic mutations. The researchers concluded that the ability to fend off the virus was “memorized” in the form of small viral RNA molecules, which were then passed to subsequent generations in somatic cells, not exclusively along the germ line.

According to the CUMC researchers, Lamarckian inheritance may provide adaptive advantages to an animal. “Sometimes, it is beneficial for an organism to not have a gene expressed,” explained Dr. Hobert. “The classic, Darwinian way this occurs is through a mutation, so that the gene is silenced either in every cell or in specific cell types in subsequent generations. While this is obviously happening a lot, one can envision scenarios in which it may be more advantageous for an organism to hold onto that gene and pass on the ability to silence the gene only when challenged with a specific threat. Our study demonstrates that this can be done in a completely new way: through the transmission of extrachromosomal information. The beauty of this approach is that it’s reversible.”

Any therapeutic implications of the findings are a long way off, Dr. Rechavi added. “The basic components of the RNAi machinery exist throughout the animal kingdom, including humans. Worms have an extra component, giving them a much stronger RNAi response. Theoretically, if that component could be incorporated in humans, then maybe we could improve our immunity and even our children’s immunity.”

The CUMC team is currently examining whether other traits are also inherited through small RNAs. “In one experiment, we are going to replicate the Dutch famine in a Petri dish,” said Dr. Rechavi. “We are going to starve the worms and see whether, as a result of starvation, we see small RNAs being generated and passed to the next generation.”

The CUMC team’s paper is entitled, “Transgenerational inheritance of an acquired small RNA-based antiviral response in C. elegans.” The other co-author is Gregory Minevich at CUMC.

This research was supported by the Howard Hughes Medical Institute and Gruss Lipper Fellowship to Oded Rechavi.

The authors declare no financial or other conflicts of interest.

Columbia University Medical Center provides international leadership in basic, pre-clinical and clinical research, in medical and health sciences education, and in patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Established in 1767, Columbia's College of Physicians and Surgeons was the first institution in the country to grant the M.D. degree and is among the most selective medical schools in the country. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest in the United States.

Karin Eskenazi | Newswise Science News
Further information:
http://www.columbia.edu

More articles from Life Sciences:

nachricht "Make two out of one" - Division of Artificial Cells
19.02.2020 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
19.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>