Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acquired Traits Can Be Inherited Via Small RNAs

06.12.2011
Columbia University Medical Center (CUMC) researchers have found the first direct evidence that an acquired trait can be inherited without any DNA involvement. The findings suggest that Lamarck, whose theory of evolution was eclipsed by Darwin’s, may not have been entirely wrong. The study is slated to appear in the December 9 issue of Cell.

“In our study, roundworms that developed resistance to a virus were able to pass along that immunity to their progeny for many consecutive generations,” reported lead author Oded Rechavi, PhD, associate research scientist in biochemistry and molecular biophysics at CUMC. “The immunity was transferred in the form of small viral-silencing agents called viRNAs, working independently of the organism’s genome.”

In an early theory of evolution, Jean Baptiste Larmarck (1744-1829) proposed that species evolve when individuals adapt to their environment and transmit those acquired traits to their offspring. For example, giraffes developed elongated long necks as they stretched to feed on the leaves of high trees, an acquired advantage that was inherited by subsequent generations. In contrast, Charles Darwin (1809-1882) later theorized that random mutations that offer an organism a competitive advantage drive a species’ evolution. In the case of the giraffe, individuals that happened to have slightly longer necks had a better chance of securing food and thus were able to have more offspring. The subsequent discovery of hereditary genetics supported Darwin’s theory, and Lamarck’s ideas faded into obscurity.

However, some evidence suggests that acquired traits can be inherited. “The classic example is the Dutch famine of World War II,” said Dr. Rechavi. “Starving mothers who gave birth during the famine had children who were more susceptible to obesity and other metabolic disorders — and so were their grandchildren.” Controlled experiments have shown similar results, including a recent study in rats demonstrating that chronic high-fat diets in fathers result in obesity in their female offspring.

Nevertheless, Lamarckian inheritance has remained controversial, and no one has been able to describe a plausible biological mechanism, according to study leader Oliver Hobert, PhD, professor of biochemistry and molecular biophysics and a Howard Hughes Medical Institute Investigator at CUMC.

Dr. Hobert suspected that RNA interference (RNAi) might be involved in the inheritance of acquired traits. RNAi is a natural process that cells use to turn down, or silence, specific genes. It is commonly employed by organisms to fend off viruses and other genomic parasites. RNAi works by destroying mRNA, the molecular messengers that carry information coded in a gene to the cell’s protein-making machinery. Without its mRNA, a gene is essentially inactive.

RNAi is triggered by doubled-stranded RNA (dsRNA), which is not found in healthy cells. When dsRNA molecules (for example, from a virus) enter a cell, they are sliced into small fragments, which guide the cell’s RNAi machinery to find mRNAs that match the genetic sequence of the fragments. The machinery then degrades these mRNAs, in effect destroying their messages and silencing the corresponding gene.

RNAi can be also triggered artificially by administering exogenous (externally derived) dsRNA. Intriguingly, the resultant gene-silencing occurs not only in the treated animal, but also in its offspring. However, it was not clear whether this effect is due to the inheritance of RNAs or to changes in the organism’s genome — or whether this effect has any biological relevance.

To look further into these phenomena, the CUMC researchers turned to the roundworm (C. elegans). The roundworm has an unusual ability to fight viruses, which it does using RNAi.

In the current study, the researchers infected roundworms with Flock House virus (the only virus known to infect C. elegans) and then bred the worms in such a way that some of their progeny had nonfunctional RNAi machinery. When those progeny were exposed to the virus, they were still able to defend themselves. “We followed the worms for more than one hundred generations — close to a year — and the effect still persisted,” said Dr. Rechavi.

The experiments were designed so that the worms could not have acquired viral resistance through genetic mutations. The researchers concluded that the ability to fend off the virus was “memorized” in the form of small viral RNA molecules, which were then passed to subsequent generations in somatic cells, not exclusively along the germ line.

According to the CUMC researchers, Lamarckian inheritance may provide adaptive advantages to an animal. “Sometimes, it is beneficial for an organism to not have a gene expressed,” explained Dr. Hobert. “The classic, Darwinian way this occurs is through a mutation, so that the gene is silenced either in every cell or in specific cell types in subsequent generations. While this is obviously happening a lot, one can envision scenarios in which it may be more advantageous for an organism to hold onto that gene and pass on the ability to silence the gene only when challenged with a specific threat. Our study demonstrates that this can be done in a completely new way: through the transmission of extrachromosomal information. The beauty of this approach is that it’s reversible.”

Any therapeutic implications of the findings are a long way off, Dr. Rechavi added. “The basic components of the RNAi machinery exist throughout the animal kingdom, including humans. Worms have an extra component, giving them a much stronger RNAi response. Theoretically, if that component could be incorporated in humans, then maybe we could improve our immunity and even our children’s immunity.”

The CUMC team is currently examining whether other traits are also inherited through small RNAs. “In one experiment, we are going to replicate the Dutch famine in a Petri dish,” said Dr. Rechavi. “We are going to starve the worms and see whether, as a result of starvation, we see small RNAs being generated and passed to the next generation.”

The CUMC team’s paper is entitled, “Transgenerational inheritance of an acquired small RNA-based antiviral response in C. elegans.” The other co-author is Gregory Minevich at CUMC.

This research was supported by the Howard Hughes Medical Institute and Gruss Lipper Fellowship to Oded Rechavi.

The authors declare no financial or other conflicts of interest.

Columbia University Medical Center provides international leadership in basic, pre-clinical and clinical research, in medical and health sciences education, and in patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Established in 1767, Columbia's College of Physicians and Surgeons was the first institution in the country to grant the M.D. degree and is among the most selective medical schools in the country. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest in the United States.

Karin Eskenazi | Newswise Science News
Further information:
http://www.columbia.edu

More articles from Life Sciences:

nachricht To proliferate or not to proliferate
21.03.2019 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Discovery of a Primordial Metabolism in Microbes
21.03.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>