Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016

Zebrafish have a wonderful characteristic trait: they have extraordinary regenerative powers that go beyond the ability to regrow injured extremities. Even heart injuries heal up completely in this fish species. For cardiologists, who regularly treat heart attack patients, this would be a dream come true. Scientists at Utrecht University and Ulm University now have unravelled a central molecular mechanism that coordinates this healing process.

Zebrafish have a wonderful characteristic trait: they have extraordinary regenerative powers that go beyond the ability to regrow injured extremities. Even heart injuries heal up completely in this fish species. For cardiologists, who regularly treat heart attack patients, this would be a dream come true. Scientists at Utrecht University and Ulm University now have unravelled a central molecular mechanism that coordinates this healing process.


In hearts with inhibited BMP signals the wound is bigger (image in the middle), while hearts where BMP signalling has been amplified show smaller wounds (right).

Chi-Chung Wu

‘The injured tissue regenerates via the proliferation of heart muscle cells located near the wound border,’ Professor Gilbert Weidinger from the Institute for Biochemistry and Molecular Biology at Ulm University explains. The international research team – a collaboration between Weidinger’s lab and scientists at the Utrecht University Hospital – was able to show that the cell proliferation is regulated by a particular family of proteins: the so-called bone morphogenetic proteins (BMPs).

BMPs are signalling proteins that play an important role in cell-to-cell communication. The researchers were able to demonstrate that BMPs are activated particularly along the border between healthy and injured tissue.

The molecular biologists developed a special method for RNA sequencing (tomo seq) which allows them to locate the activity of various genes in the wound area and the adjacent tissue. ‘This generates a genome-wide atlas of gene expression and activity patterns, showing significant regional differences. This sheds light on which genes and cell signals are active in a regenerating heart both in the healthy and the injured tissue, or rather exactly along the border of the wound,’ says Chi-Chung Wu.

The PhD student from Hong Kong conducts research at Ulm University. Together with his colleague from Utrecht, Fabian Kruse, he is first author of the study, which has been published in the renowned journal Developmental Cell (2016/36: 36--49).

Using this sequencing technique, the scientists found that BMP signalling is activated by heart muscle cells in the wound border zone where healthy and injured tissue come together. With the help of transgenic zebrafish in which the BMP signalling pathway was either inhibited or amplified, the researchers were able to selectively influence the regeneration process. In the genetically modified animals where the BMP signalling pathway had been blocked, heart muscle cell proliferation was reduced considerably. In those animals with overly active BMP the regeneration was actually enhanced.

‘Surprisingly, this signalling pathway plays no role in cell division during embryonic heart development, only in heart regeneration due to injury,’ the scientists say in astonishment. This means that the tissue formation in the fish heart during embryonic development and during regeneration is regulated by two different processes.

There is another finding that astounds the researchers: ‘The BMP signalling is also active in the injured hearts of mice, but there the heart cells react in a dramatically different way: they die. Here the BMP doesn’t promote healing but causes the damaged cells to commit suicide,’ says Professor Jeroen Bakkers from Hubrecht Institute at the Utrecht University Hospital. He is, like Prof. Weidinger, co-corresponding author of this study.

The scientists now want to work out why heart cells in zebrafish and in mammals like mice react so differently, and which processes are ultimately responsible.

If mammals – which humans are classified as taxonomically – were able to replace injured heart cells in the same way as zebrafish there would be new hope for heart attack patients. The reason why a myocardial infarction, as this life-threatening event is also called, is so dangerous for humans is because the dying heart muscle cells cannot be replaced. This leads to extensive scarring of the heart muscle and causes the organ to lose strength. The medical relevance of this project is therefore tremendous. ‘Maybe one day it will be possible to considerably improve the regenerative capacity of human heart tissue with medication or therapies that have been developed on the basis of such fundamental research findings,’ the researchers hope.

Further information:
Prof. Dr. Gilbert Weidinger; Email: gilbert.weidinger@uni-ulm.de;

Weitere Informationen:

http://www.cell.com/developmental-cell/abstract/S1534-5807%2815%2900795-9

Andrea Weber-Tuckermann | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Measurement of thoughts during knowledge acquisition
25.03.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Important Progress in the Fight against Testicular Cancer
25.03.2019 | Universität Bremen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Important Progress in the Fight against Testicular Cancer

25.03.2019 | Life Sciences

Measurement of thoughts during knowledge acquisition

25.03.2019 | Life Sciences

Eliminating hepatitis C viruses effectively

25.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>