Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A worm with five faces

04.01.2016

Max Planck scientists discover new roundworm species on Réunion

For eight years, a research team headed by Ralf Sommer and Matthias Herrmann travel to Réunion Island in the Indian Ocean. The scientists from the Max Planck Institute of Developmental Biology have now discovered a new nematode species on the island.


Two of five different morphs of Pristionchus borbonicus, heads magnified as inserts.

© MPI f. Devolopmental Biology


Figs of Ficus mauritiana can be found growing on runners on the ground.

© MPI f. Devolopmental Biology

The discovered nematodes live inside of fig plants and at first sight they look totally different. Much to their surprise, the scientists found that all the worms belong to a single species, which can develop five different mouth forms. The nematodes are genetically identical, however their food source decides on the mouth form. They are an extreme example of evolutionary divergence within a species.

The discovered roundworms, so-called nematodes, live inside of wild figs and hitch hike on tiny pollinating fig wasps to reach new fig flowers. Ralf Sommer’s team called the new species Pristionchus borbonicus after the Île Bourbon, the old name of Réunion Island until 1848.

Much to their surprise, the scientists found that the tiny worms had five distinct mouth forms, differing so much from each other in their appearance that they were initially considered to belong to separate species. Conventional morphology, that is the study of the form and structure of organisms, examines organisms under the microscope and describes them as accurately as possible.

Only by sequencing the nematodes’ genomes, the Max Planck scientists managed to assign the five distinct mouth forms to a single species, namely the recently described Pristionchus borbonicus.

This is an extreme example of evolutionary divergence within one species and of variation in shape and form in the context of genetic identity. Interestingly, the researchers found similar roundworms of the same type in figs from Vietnam and South Africa. It is evident that the association with figs is a widespread phenomenon.

“The different mouth forms of Pristionchus borbonicus, that we have found now, are specialized for the preferred intake of bacteria, yeasts or other roundworms. So, obviously they occupy different ecological niches within the fig”, explains Ralf Sommer, Director of the Department for Evolutionary Biology. “With this team of specialists the species can exploit a large food spectrum and efficiently buffer fluctuations in the availability of a certain resource by changing the proportion of mouth forms.”

Until now Sommer and his team knew that the Pristionchus species, with which they have already been working for a long time, live on beetles and develop two different mouth forms, depending on the food supply and on the environment.

Thus, Pristionchus develops either a short wide mouth or a long narrow one. The wide-mouthed variant, which has a single, characteristic tooth, is suitable for carrying out predatory attacks. The narrow version, in contrast, is mainly used for grazing on bacterial food sources.

Thus, the tiny fig fruit has once again proven its reputation as a highly complex, co-evolved ecosystem with the fig wasp as the transmitter that reliably colonizes each generation of figs with a large number of different bacteria, yeasts, other microbes and roundworms. To understand the role that Pristionchus borbonicus plays in this intricate system is an exciting new subject of research for the MPI scientists. They already plan their next journey to Réunion to find new types of figs and nematodes.


Contact

Prof. Dr. Ralf J. Sommer
Department Evolutionary Biology

Max Planck Institute for Developmental Biology, Tübingen
Phone: +49 7071 601-371

Email: ralf.sommer@tuebingen.mpg.de


Nadja Winter
Max Planck Institute for Developmental Biology, Tübingen
Phone: +49 7071 601-444

Fax: +49 7071 601-446

Email: presse-eb@tuebingen.mpg.de


Original publication
Susoy et al.

Large-scale diversification without genetic isolation in nematode symbionts of figs

Science Advances 2016;2:e1501031 (1 January, 2016)

Prof. Dr. Ralf J. Sommer | Max Planck Institute for Developmental Biology, Tübingen
Further information:
https://www.mpg.de/9815335/pristionchus-borbonicus?filter_order=L&research_topic=

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>