Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A very human machine

26.02.2019

New brain implants disguise as neurons, offering a potentially safer way to study and treat the brain

Like a well-guarded fortress, the human brain attacks intruders on sight. Foreign objects, including neural probes used to study and treat the brain, do not last long. But now, researchers have designed a probe that looks, acts, and feels so much like a real neuron that the brain cannot identify the imposters. According to Charles M. Lieber, this breakthrough "literally blurs the ever-present and clear dissimilarities in properties between man-made and living systems." They have blurred the line between human and machine.


Neuron-like electronics (red) mimic the shape, size, and flexibility of neurons (green), enabling them to maintain symbiosis with native brain tissue.

Credit: Xiao Yang (Lieber Lab)

Lieber, the Joshua and Beth Friedman University Professor at Harvard University, and his lab members are authors on a new paper published in Nature Materials that presents a bioinspired design for neural probes.

Implanted directly into brain tissue, probes are designed to survive as long as possible in the organ's warm, humid, and inhospitable environment. Sensors hidden within protective casings send data back to researchers. Knowing how and when individual neurons fire and neural circuits communicate could inform how to treat neurological disorders like Parkinson's, reverse neural decay from Alzheimer's and aging, or even enhance cognitive capabilities.

But current implants cannot trick the brain--they cause a foreign body response. Large and stiff compared to real neurons and neural tissue, traditional implants have two major impediments to sustained monitoring. During the initial placement in brain tissue--which usually requires surgery--neurons flee the impacted area. Previous studies have shown that the brain's immune system senses the foreign object and gets to work, causing inflammation and scar tissue to isolate the device. Even if they can capture signals beyond the scar tissue, rigid probes can shift position and end up replacing one neural signal for another, closer one.

"This will ultimately make the recorded signal unstable," said first author Xiao Yang, a fourth-year graduate student in the Lieber lab. Wearing a purple and pink speckled sweater, glasses, and jeans, she moved her cupped hands together, then apart, then together again as she explained how she and her team built a probe that inspires negligible immune response, records neural signals within a day post-implantation, and may even encourage tissue regeneration.

"The stereotype of the neural probe is that they are giant compared to the neuron targets that they're interrogating. But in our case, they are essentially the same," said Yang. Their probe mimics three features that previously have not been possible to achieve in a lab: the shape, size, and flexibility of an actual neuron.

Neurons look a bit like tadpoles, with round heads and long, flexible tails. So, Yang and her colleagues created a "head" to house the¬ir metal recording electrode, which matches the size of the neuron's soma (or cell body). Their wire interconnect snakes through an ultra-flexible polymer "tail," resembling the neuron's neurite. According to Yang, their neuron-like electronics (NeuE) are "5 to 20 times more flexible than the most flexible probes reported to date." The ones they bested were their own mesh electronics.

The width of a typical neuron "head" is about the same a very fine strand of hair (20 microns), and the "tail" can be 10-20 times finer. Measuring the same or even thinner widths, the neuron-like electronic is the smallest probe yet. To craft their microscopic tools, Yang and her colleagues relied on photolithography, which uses light to transfer a pattern onto material and constructs the probe's four distinct layers of metal and polymer one at a time.

Once built, the team uses a syringe to inject sixteen of their cell imitators into the hippocampus region--chosen for its central role in learning, memory, and aging--of a mouse brain. There, they unfold to create a porous web, imitating the brain's crisscrossing neuron network.

Bigger, solid probes exclude native cells from their territory and can disrupt the neural circuits that researchers are trying to study. Yang's probes allow cells to integrate fully and take-up less than 1% of the volume where they are implanted. Starting from as early as a day to months later, neurons integrate with the artificial network, forming a harmonious hybrid. This assimilation explains why the team achieved stable data collection even months post-implantation. They did not lose even one neuron signal. Instead, they gained some.

"In an unexpected and exciting result," according to Yang, the new neuronal signals indicate that newborn neurons may use the artificial neuron-like electronics as a scaffold to reach damaged areas of the brain and help regenerate tissue.

Regenerative treatments typically rely on stem cells to assist the brain to rebuild after damage. But, like larger probes, transplanted stem cells can cause an immune response, which weakens their efficacy. Neuron-like electronics instead recruits endogenous stem cells from the host's brain and helps them migrate to the damaged region.

Since they are not foreign objects, the brain's immune system lets them work in peace. Though further research is needed, the neuron-like electronics could eventually offer a safe, stable alternative to treat neurological diseases, brain damage, and even depression and schizophrenia, where the added benefit of actively monitoring and modulating the regenerated neural networks will be possible.

Currently, Yang is working on several directions, including the design and fabrication of even smaller and more flexible probes, as well as exploring the potential of the neuron-like electronics to serve as an active scaffold for regenerating neural tissue in vivo.

With marginal immune response, regenerative properties, and unprecedented stability, the team not only blurred the line between man-made and living systems, they made it near invisible.

Media Contact

Caitlin McDermott-Murphy
cmcdermottmurphy@fas.harvard.edu
617-496-2618

 @HarvardResearch

http://www.harvard.edu 

Caitlin McDermott-Murphy | EurekAlert!
Further information:
https://chemistry.harvard.edu/news/a-very-human-machine
http://dx.doi.org/10.1038/s41563-019-0292-9

More articles from Life Sciences:

nachricht To proliferate or not to proliferate
21.03.2019 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Discovery of a Primordial Metabolism in Microbes
21.03.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>