A new type of biological camera can trace several different molecules at once in a live animal

A new type of biological camera can trace several different molecules at once in a live animal

Doctors and scientists can visualize specific biological processes in living creatures by monitoring radioactive tracer molecules. So far, imaging techniques have largely been limited to seeing one tracer molecule at a time, which is unlikely to provide the full picture of complex functions or diseases.

Now Shuichi Enomoto, Shinji Motomura and co-workers at the RIKEN Molecular Imaging Research Program in Kobe and Wako have produced images of three radioactive isotopes at the same time in a live mouse (1). The researchers adapted a gamma-ray imaging device called a semiconductor Compton camera, which was originally developed for gamma-ray astrophysics.

“We had been working on research and development of ‘multitracer’ technology,” explains Motomura. “A multitracer contains radioisotopes of various chemical elements, so that many elements and their interactions can be observed by one experiment. Later we proposed realizing multiple molecular imaging with a semiconductor Compton camera.”

The Compton camera consists of two detectors made from intermeshed strips of germanium, and can probe a wide range of gamma ray energies. “An extremely pure crystal of germanium can work as a radiation detector with high energy resolution,” explains Motomura. “Two sets of germanium electrodes are arranged in strips at right angles, so that the gamma-ray energy and hit positions can be detected.”

To test their modified Compton camera for biological imaging, the researchers chose three common radioactive tracers—isotopes of iodine, strontium and zinc—and injected them into an eight-week-old male mouse. The mouse was anaesthetized and scanned for 12 hours, producing both 2D and 3D images. The three tracers were distinguished by identifying their different emission energy peaks, and could be represented together in images by allocating three different colors: red, green and blue.

All the tracers collected in areas where they would normally be expected: zinc tends to accumulate in the liver or in tumors, while strontium collects in the bones and iodine is taken up into the adrenal and thyroid glands. The researchers observed similar concentrations and distributions of the tracers every 3 hours over the 12-hour scanning period, implying a fast and long-lasting imaging capability.

The researchers believe their results show great promise for the Compton camera in biological imaging. At present these germanium-based detectors are very expensive, but there could be strong demand in future, once the researchers improve their equipment to provide higher resolution images in a shorter time.

Reference

1. Motomura, S., Kanayama, Y., Haba, H., Watanabe, Y. & Enomoto, S. Multiple molecular simultaneous imaging in a live mouse using semiconductor Compton camera. Journal of Analytical Atomic Spectrometry 23, 1089–1092 (2008).

The corresponding author for this highlight is based at the RIKEN Metallomics Imaging Research Unit

Media Contact

Saeko Okada ResearchSEA

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors