Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Without a trace: Cells keep to one direction by erasing the path

26.09.2013
Migrating cells, it seems, cover their tracks not for fear of being followed, but to keep moving forward.

Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have now shown that cells in a zebrafish embryo determine which direction they move in by effectively erasing the path behind them. The findings, published online today in Nature, could have implications not just for development but also for cancer and metastasis.

As a zebrafish embryo develops, a group of cells migrate down the side of its body, leaving clumps of cells along the way. Those clumps will become ear-like organs, sensing vibrations in the water. In the adult fish, this is called the lateral line, so the moving mass in the embryo is dubbed the lateral line primordium. To migrate, these cells follow a trail of a molecule called a chemokine – but how do they know to keep moving in the same direction?

Scientists assumed that the trail was a one-way path: a gradient where cells moved from less- to more-concentrated chemokine. But Darren Gilmour and colleagues at EMBL have now found that, rather than being produced outside them, that gradient is actually generated by the cells themselves.

“We found that the cells at the rear of the group have a ‘vacuum cleaner’,” says Erika Donà, who carried out the work. “They suck up the chemokine at the back, but at the front there’s still a lot of chemokine to follow, so the cells move forward.”

To investigate the role of the ‘vacuum cleaner’ molecule, Gilmour and Donà turned to a ‘detector’ molecule which all cells in the primordium use to sniff out the chemokine, and which the scientists labelled with a tag that goes from green to red as the detector ages. Cells at the front of the primordium glowed green, showing they were in such frequent contact with the chemokine that their detectors were constantly being renewed, while cells at the rear encountered so little chemokine that their detectors had a chance to grow old, painting the cells red.

To show that this gradient is created by the act of sucking up the chemokine, the scientists genetically engineered fish to have the vacuum cleaner molecule in an accompanying nerve rather than at the rear of the primordium itself. When the vacuum cleaner was switched to the nerve, the nerve went from following the migrating primordium to guiding it.

“It makes a lot of sense for the cells to choose their own direction,” says Darren Gilmour, who led the work. “There’s a lot going on in the embryo, lots of cells moving in lots of directions, so it may be very difficult to sustain a gradient. What we’ve shown is that you don’t always need to.”

The study could also be relevant to another, seemingly very different type of moving cells: those in metastasising cancers. Scientists have found that both the ‘detector’ and the ‘vacuum cleaner’ molecule play important roles in different tumours’ ability to metastasise – to spread from one place to another in the body. These findings hint at what those roles might be, and consequently at possible ways to block them.

The colour-changing tag used in this study was first developed by Anton Khmelinskii in the group of EMBL Alumnus Michael Knop, now at the DKFZ-ZMBH Alliance. Joseph Barry in the Huber group helped develop and apply data analysis methods for this work.

The videos accompanying this release are also available on the EMBL YouTube Channel: www.youtube.com/emblmedia.

Published online in Nature on 25 September 2013.
For videos, images and for more information please visit: www.embl.org/press/2013/130925_Heidelberg.

Policy regarding use

EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Sonia Furtado Neves
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado Neves | EMBL Research News
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>