Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A touching story: The ancient conversation between plants, fungi and bacteria

28.08.2014

The mechanical force that a single fungal cell or bacterial colony exerts on a plant cell may seem vanishingly small, but it plays a heavy role in setting up some of the most fundamental symbiotic relationships in biology.

In fact, it may not be too much of a stretch to say that plants may have never moved onto land without the ability to respond to the touch of beneficial fungi, according to a new study led by Jean-Michel Ané, a professor of agronomy at the University of Wisconsin-Madison.

"Many people have studied how roots progress through the soil, when fairly strong stimuli are applied to the entire growing root," says Ané, who just published a review of touch in the interaction between plants and microbes in the journal Current Opinion in Plant Biology. "We are looking at much more localized, tiny stimuli on a single cell that is applied by microbes."

Specifically, Ané, Dhileepkumar Jayaraman, a postdoctoral researcher in agronomy, and Simon Gilroy, a professor of botany, studied how such a slight mechanical stimulus starts round one of a symbiotic relationship — that is, a win-win relationship between two organisms.

It's known that disease-causing fungi build a structure to break through the plant cell wall, "but there is growing evidence that fungi and also bacteria in symbiotic associations use a mechanical stimulation to indicate their presence," says Ané. "They are knocking on the door, but not breaking it down."

After the fungus announces its arrival, the plant builds a tube in which the fungus can grow. "There is clearly a mutual exchange of signals between the plant and the fungus," says Ané. "It's only when the path is completed that the fungus starts to penetrate."

Mycorrhizae are the beneficial fungi that help virtually all land plants absorb the essential nutrients — phosphorus and nitrogen — from the soil. Biologists believe this ubiquitous mechanism began about 450 million years ago, when plants first moved onto land.

Mechanical signaling is only part of the story — microbes and plants also communicate with chemicals, says Ané. "So this is comparable not to breaking the door or even just knocking on the door, but to knocking on the door while wearing cologne. Clearly the plant is much more active than we thought; it can process signals, prepare the path and accept the symbiont."

Beyond fungi, some plants engage in symbiosis with bacteria called rhizobia that "fix" nitrogen from the atmosphere, making it available to the plant.

Rhizobia enable legumes like soybeans and alfalfa to grow without nitrogen fertilizer.

When Ané and his colleagues looked closer, they found that rhizobium symbiosis also employs mechanical stimulation. When the bacterium first contacts a root hair, the hair curls around the bacterium, trapping it.

The phenomenon of curling has been known for almost 100 years. "But why would nature develop such a complicated mechanism to entrap a bacterial colony?" Ané asks. "We propose the purpose is to apply mechanical stimulation" so the plant will start building a home for the rhizobium — for mutual benefit. "We have preliminary evidence that when the entrapment is not complete, the process of colonization does not happen," he says.

Again, the two-step communication system is at work, Ané adds. "The curling process itself can only begin when the plant gets a chemical signal from the bacterium — but the growing tube inside the root hair that accepts the bacteria requires something else, and nobody knew what. We propose it's a mechanical stimulation created by entrapping, which gives the bacterial colony a way to push against the root."

In many respects, this symbiosis parallels the older one between plants and beneficial fungi, Ané says. Indeed, he says legumes have "hijacked" the mycorrhizae system. "Plants used the symbiosis toolkit to develop this relationship with mycorrhizae, and then used it again for bacteria. This dual requirement for chemical and mechanical signals is present in both associations, even though the association between rhizobia and legumes is only 60 million years old."

###

David Tenenbaum
608-265-8549
djtenenb@wisc.edu

Jean-Michel Ané | Eurek Alert!
Further information:
http://www.wisc.edu/

Further reports about: bacterium conversation fungi fungus hair microbes nitrogen symbiosis

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>