A thirst for excitement is hidden in your genes

Sensation seeking has been linked to a range of behavior disorders, such as drug addiction. It isn't all bad, though. “Not everyone who's high on sensation seeking becomes a drug addict. They may become an Army Ranger or an artist.

It's all in how you channel it,” says Jaime Derringer, a PhD student at the University of Minnesota and the first author of the study. She wanted to use a new technique to find out more about the genetics of sensation seeking.

Most obvious connections with genes, like the BRCA gene that increases the risk for breast cancer, have already been found, Derringer says. Now new methods are letting scientists look for more subtle associations between genes and all kinds of traits, including behavior and personality.

Derringer used a kind of mutation in DNA called a single-nucleotide polymorphism, or SNP. A SNP is a change in just one “letter” of the DNA. She started by picking eight genes with various roles related to the neurotransmitter dopamine, which has been linked to sensation seeking in other studies. She looked at group of 635 people who were part of a study on addiction.

For each one, she had genetic information on 273 SNPs known to appear in those 8 genes and a score for how much they were inclined to sensation seeking. Using that data, she was able to narrow down the 273 SNPs to 12 potentially important ones. When she combined these 12 SNPs, they explained just under 4 percent of the difference between people in sensation seeking. This may not seem like a lot, but it's “quite large for a genetic study,” Derringer says.

It's too soon to go out and start screening people for these mutations; not enough is known about how genes affect behavior. “One of the things we think is most exciting about this isn't necessarily the story about dopamine and sensation seeking,” says Derringer. “It's rather the method that we're using. We used a sample of 635 people, which is extremely small, and we were still able to detect a significant effect. That's actually quite rare in these studies.” She said the same method could be used to look at the link between biology and other behaviors—dopamine and cocaine dependence, for example, or serotonin and depression.

Eventually these methods could lead to tests that might help predict whether someone is likely to have problems later, and whether there should be early intervention to guide them down a healthier path.

For more information about this study, please contact Jaime Derringer at derri023@umn.edu.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article “Predicting Sensation Seeking From Dopamine Genes: A Candidate-System Approach” and access to other Psychological Science research findings, please contact Keri Chiodo at 202-293-9300 or kchiodo@psychologicalscience.org

Media Contact

Keri Chiodo EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors