A small cut with a big impact

For this process, the protein ARTD1 is removed from the DNA. Veterinary biochemists and molecular biologists from the University of Zurich have now elucidated this previously unclear mechanism: ARTD1 is cut into two pieces by molecular scissors, which enhances gene expression. The results are groundbreaking for our understanding of inflammatory responses and the development of new anti-inflammatory drugs.

Diseases and injuries trigger warning signals in our cells. As a result, genes are expressed and proteins produced, modified or degraded to adapt to the external danger and to protect the organism. In order to be able to produce a particular protein, the corresponding DNA segment, the gene, needs to be expressed and translated. The DNA is localized in the cell nucleus, and exists as a long string that is coiled and bound by proteins. ARTD1 is one such protein, and therefore has the potential to regulate the expression level of genes through its interaction with DNA.

If cells detect warning signals or foreign bodies like bacteria and viruses in their surroundings, the expression profile of genes changes and an inflammatory response is triggered. To induce changes in gene expression, ARTD1 is removed from particular sites of the DNA. The process by which this is brought about has, until now, remained elusive. The team headed by Professor Michael O. Hottiger from the Institute of Veterinary Biochemistry and Molecular Biology at the University of Zurich has now discovered how ARTD1’s DNA recruitment is regulated during inflammation, thereby influencing gene expression and subsequently inflammation.
Molecular scissors
As the researchers demonstrate in Molecular Cell, ARTD1 is cut into two pieces by molecular scissors, the protein caspase 7. Upon cleavage, these pieces can no longer bind to the DNA, thus allowing for more efficient gene expression.

The cleavage of proteins by caspase 7 was so far mainly associated with cell death. “The cleavage of ARTD1 by caspase 7 during inflammation constitutes a new biological function. It permits a new understanding of inflammatory responses and, in the longer term, may lead to the development of new anti-inflammatory drugs,” explains Professor Hottiger. The results are of considerable importance because inflammation underlies most diseases, including cancer, immune disorders or metabolic syndrome.

Literature:
Süheda Erener, Virginie Pétrilli, Ingrid Kassner, Roberta Minotti, Rosa Castillo, Raffaella Santoro,

Paul O. Hassa, Jürg Tschopp, and Michael O. Hottiger. Inflammasome-Activated Caspase 7 Cleaves PARP1 to Enhance the Expression of a Subset of NF-kB Target Genes. Molecular Cell. March 29, 2012. doi:10.1016/j.molcel.2012.02.016

Contact:
Professor Michael O. Hottiger
Institute of Veterinary Biochemistry and Molecular Biology
University of Zurich
Tel.: +41 44 635 54 77
Email: hottiger@vetbio.uzh.ch

Media Contact

Nathalie Huber Universität Zürich

More Information:

http://www.uzh.ch

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors