Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A simple cell holds 42 million protein molecules, scientists reveal

11.01.2018

It's official--there are some 42 million protein molecules in a simple cell, revealed a team of researchers led by Grant Brown, a biochemistry professor in the University of Toronto's Donnelly Centre for Cellular and Biomolecular Research. Analyzing data from almost two dozen large studies of protein abundance in yeast cells, the team was able to produce for the first time reliable estimates for the number of molecules for each protein, as revealed in a study published this week in the journal Cell Systems.

The work was done in collaboration with Anastasia Baryshnikova, a U of T alum and now Principal Investigator at Calico, a California biotechnology company that focuses on aging.


Yeast cells expressing proteins that carry green and red fluorescent tags to make them visible.

Credit: Brendan Ho

Proteins make up our cells and do most of the work in them. This way, they bring genetic code to life because the recipes for building proteins are stored within the genes' DNA code.

Explaining the work, Brown said that given that "the cell is the functional unit of biology, it's just a natural curiosity to want to know what's in there and how much of each kind."

Curiosity notwithstanding, there's another reason why scientists would want to tally up proteins. Many diseases are caused by either having too little or too much of a certain protein. The more scientists know about how protein abundance is controlled, the better they'll be able to fix it when it goes awry.

Although researchers have studied protein abundance for years, the findings were reported in arbitrary units, sowing confusion in the field and making it hard to compare data between different labs.

Many groups, for example, have estimated protein levels by sticking a fluorescent tag on protein molecules and inferring their abundance from how much the cells glow. But the inevitable differences in instrumentation meant that different labs recorded different levels of brightness emitted by the cells. Other labs measured proteins levels using completely different approaches.

"It was hard to conceptualize how many proteins there are in the cell because the data was reported on drastically different scales," said Brandon Ho, graduate student in the Brown lab who did most of the work on the project.

To convert arbitrary measures into the number of molecules per cell, Ho turned to baker's yeast, an easy to study single-cell microbe that offers a window into how a basic cell works. Yeasts are also the only organism for which there was enough data available to calculate molecule number for each of the 6,000 proteins encoded by the yeast genome thanks to 21 separate studies that measured abundance of all yeast proteins. No such datasets exist for human cells where each cell type contains only a subset of proteins encoded by the 20,000 human genes.

The wealth of existing yeast data meant that Ho could put it all together, benchmark it and convert the vague measures of protein abundance into "something that makes sense, in other words, molecules per cell," said Brown.

Ho's analysis reveals for the first time how many molecules of each protein there are in the cell, with a total number of molecules estimated to be around 42 million. The majority of proteins exist within a narrow range--between 1000 and 10,000 molecules. Some are outstandingly plentiful at more than half a million copies, while others exist in fewer than 10 molecules in a cell.

Analyzing the data, the researchers were able to glean insights into the mechanisms by which cells control abundance of distinct proteins, paving the way for similar studies in human cells that could help reveal molecular roots of disease. They also showed that a protein's supply correlates with its role in the cell, which means that it may be possible to use the abundance data to predict what proteins are doing.

Finally, in a finding that will rejoice cell biologists everywhere, Ho showed that the common practice of stitching glowing tags onto proteins has little effect on their abundance. While the approach has revolutionized the study of protein biology, netting its discoverers Osamu Shimomura, Martin Chalfie and Roger Tsien the Nobel prize in chemistry in 2008, it also stoked worries that tagging could affect protein durability, which would flaw the data.

"This study will be of great value to the entire yeast community and beyond," said Robert Nash, senior biocurator of the Saccharomyces Genome Database that will make the data available to researchers worldwide. He also added that by presenting protein abundance "in a common and intuitive format, the Brown lab has provided other researchers with the opportunity to reexamine this data and thereby facilitate study-to-study comparisons and hypothesis generation."

Media Contact

Jovana Drinjakovic
jovana.drinjakovic@gmail.com
416-946-8253

 @UofTNews

http://www.utoronto.ca 

Jovana Drinjakovic | EurekAlert!

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>