Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A shortcut in the global sulphur cycle

01.11.2018

Chemists at the Friedrich Schiller University Jena (Germany) discover previously unknown metabolic pathway in plankton

Sulphur is found in many different compounds throughout the world – not only in the atmosphere, but also in the oceans and on land. All these manifestations are connected in a cycle. To put things simply, the element in its mineral form is reduced and transferred into organic compounds.


Prof. Dr Georg Pohnert and his team at the University Jena found a new chemical compound produced by single-cell algae and bacteria, which form part of the plankton in the sea.

Photo: Jan-Peter Kasper/FSU

These are passed around by organisms before finally reaching the atmosphere, where they are oxidized before they return to the land and seas in the rain. While we have known about this for some time, chemists at the Friedrich Schiller University Jena (Germany) and their US colleagues have now discovered a completely unexpected shortcut in the cycle. This process is determined by tiny organisms in the ocean’s plankton. The scientists have described their discovery in the latest edition of the renowned research journal “Nature”.

‘We’ve found that certain single-cell algae and bacteria, which form part of the plankton in the sea, produce a new chemical compound with the complicated name “dimethylsulphoniopropionate”, or “DMSOP” for short’, explains Prof. Dr Georg Pohnert from the University of Jena.

‘This has allowed us to deduce valuable information about the global sulphur cycle, and we can now provide a new explanation for huge quantities of sulphur flow in the cycle. Even though one microalga only produces negligible quantities of the compound, we’re talking about several teragrams in total, so several billion kilograms a year’.

This is because single-cell algae are incredibly active in the world’s oceans. The findings made by Jena’s chemists give us a better understanding of the earth’s sulphur cycle, which offers important knowledge for atmospheric and climatic models.

Stress protection for algae

However, the information offered by the research results doesn’t just help us to better understand the sulphur cycle; the scientists found one reason for the production of DMSOP by investigating how the algae adapt to their environment.

‘These single-cell organisms are permanently moving around in the sea, and so they’re constantly exposed to different salt contents and oxidative stress’, explains Pohnert. ‘The new compound now shows how this stress can be balanced out through a sophisticated system of chemical reactions. One way of doing this is by producing and breaking down highly polar organic molecules. And the new sulphurous metabolic product plays a key role here’.

Jena’s scientists, whose work was supported by the German Research Foundation’s ‘ChemBioSys’ collaborative research centre, examined water samples from various regions of the oceans, in order to establish whether the production of the sulphurous compound was a global phenomenon.

‘We found DMSOP in all samples from the Arctic to the Mediterranean’, explains Prof. Pohnert, who also works at the University of Jena’s Cluster of Excellence, “Microverse”. ‘So, producers of the sulphurous compound can be found everywhere’.

These new results have provided the chemists at the University of Jena with important information about the functioning of microbial communities in the ocean, and the results are also relevant for possible applications. ‘More and more algae are being grown in aquaculture to produce animal feed, foodstuffs and energy. That’s why it’s important to fully understand their metabolism’, says the expert from Jena. ‘Our current insights have once again revealed what an incredibly complex and effective system is hidden away in plankton’.

Wissenschaftliche Ansprechpartner:

Prof. Dr Georg Pohnert
Institute of Inorganic and Analytical Chemistry at the Friedrich Schiller University Jena
Lessingstrasse 8, 07743 Jena
Germany
Phone: +49 (0) 3641 / 948170
Email: georg.pohnert[at]uni-jena.de

Originalpublikation:

K. Thume, B. Gebser, L. Chen, N. Meyer, D. Kieber, G. Pohnert: The metabolite dimethylsulfoxonium propionate extends the marine organosulfur cycle, www.nature.com, DOI: 10.1038/s41586-018-0675-0

Axel Burchardt | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics
13.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Small RNAs link immune system and brain cells
13.11.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnets for the second dimension

12.11.2019 | Machine Engineering

New efficiency world record for organic solar modules

12.11.2019 | Power and Electrical Engineering

Non-volatile control of magnetic anisotropy through change of electric polarization

12.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>