Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new set of building blocks for simple synthesis of complex molecules

23.08.2011
Assembling chemicals can be like putting together a puzzle. University of Illinois chemists have developed a way of fitting the pieces together to more efficiently build complex molecules, beginning with a powerful and promising antioxidant.

Led by chemistry professor Martin Burke, the team published its research on the cover of the chemistry journal Angewandte Chemie.

Burke’s group is known for developing a synthesis technique called iterative cross-coupling (ICC) that uses simple, stable chemical “building blocks” sequentially joined in a repetitive reaction. With more than 75 of the building blocks available commercially, pharmaceutical companies and other laboratories use ICC to create complex small molecules that could have medicinal properties.

“There’s pre-installed functionality and stereochemistry, so everything is set in the building blocks, and all you have to do is couple them together,” said graduate student Seiko Fujii, the first author of the paper.

However, ICC has been limited to only molecules with one type of polarity. Now, the group has developed reverse-polarity ICC, which allows a chemist to optimize the ICC process to match the target molecules’ electronic structure. The reversal in polarity enables a whole new class of building blocks, so researchers can synthesize molecules more efficiently and even construct molecules that standard ICC cannot.

For example, in the paper, the group used the new method to make synechoxanthin (pronounced sin-ecko-ZAN-thin), a molecule first isolated from bacteria in 2008 that shows great promise as an antioxidant. Studies suggest that synechoxanthin allows the bacteria that produce it to live and thrive in highly oxidative environments.

“We as humans experience a lot of oxidative stress, and it can be really deleterious to human health,” said Burke, who also is affiliated with the Howard Hughes Medical Institute. “It can lead to diseases like cancer and atherosclerosis and neurodegenerative disorders. Evidence strongly suggests that synechoxanthin is a major part of the bacteria’s solution to this problem. We’re excited to ask the question, what can we learn from the bug? Can it also protect a human cell?”

Studies on the activity of synechoxanthin have been limited by the difficulty of extracting the molecule from bacterial cultures. Burke’s group successfully synthesized it from a mere three types of readily available, highly stable, non-toxic building blocks. Thanks to the ease of ICC, they can produce relatively large quantities of synechoxanthin for study as well as derivatives to test against the natural product.

“Because this building-block-based design is inherently flexible, once we’ve made the natural product, we can make any derivative we want simply by swapping in one different building block, and then using the reverse-polarity ICC to snap them together,” Burke said. “That’s where synthesis is so powerful. Oftentimes, the cleanest experiment will require a molecule that doesn’t exist, unless you can piece it together.”

Researchers can also use blocks that have been “tagged” with a fluorescent or radioactive dye to make it easier to study the molecule and its activity. For example, Fujii next plans to synthesize both synechoxanthin and its apolar derivative with tags so that NMR imaging can reveal its location and orientation within a cell’s membrane, possibly providing clues to its activity.
“After we have all these molecules in hand, we’re really excited to test the antioxidant activity of them in a model membrane,” Fujii said.

The National Institutes of Health and the Howard Hughes Medical Institute supported this work.

Editor’s notes: To reach Martin Burke, call 217-244-8726; email burke@scs.illinois.edu.

The paper, “Total Synthesis of Synechoxanthin through Iterative Cross-Coupling,” is available online

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>