Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A role for calcium in taste perception

11.01.2010
Appearing in the Jan. 8 issue of JBC

Calcium may not come to mind when you think of tasty foods, but in a study appearing in the January 8 issue of JBC, Japanese researchers have provided the first demonstration that calcium channels on the tongue are the targets of compounds that can enhance taste.

In addition to molecules that directly trigger specific taste buds (salty, sweet etc.), there are other substances which have no flavor of their own but can enhance the flavors they are paired with (known as kokumi taste in Japanese cuisine).

Exploiting this enhancement could have practical uses in food modulation; for example, creating healthy foods that contain minimal sugar or salt but still elicit strong taste. At the moment, though, the mode of action for these substances is poorly understood.

However, Yuzuru Eto and colleagues examined whether calcium channels –which sense and regulate the levels of calcium in the body— might be the mechanism involved; they noted that calcium channels are closely related to the receptors that sense sweet and umami (savory) tastes and that glutathione (a common kokumi taste element) is known to interact with calcium channels.

To test their possibility, they created several small molecules that resembled glutathione and analyzed how well these compounds activated calcium channels in cell samples. Next, they diluted the same test substances in flavored water (salt water, sugar water, etc.) and asked volunteers (all trained in discriminating tastes) to rate how strong the flavors were.

The results provided a strong correlation; the molecules that induced the largest activity in calcium receptors also elicited the strongest flavor enhancement in the taste tests.

For further confirmation, the researchers tested several other known calcium channel activators, including calcium, and found all exhibited some degree of flavor enhancement, while a synthetic calcium channel blocker could suppress flavors.

This study provides new of insight into the areas of taste biology; the authors also note that calcium channels are found in the gastro-intestinal tract as well, suggesting they may be important in other aspects of eating, such as food digestion and absorption.

From the Article: "Involvement of the Calcium-sensing Receptor in Human Taste Perception" by Takeaki Ohsu, Yusuke Amino, Hiroaki Nagasaki, Tomohiko Yamanaka, Sen Takeshita, Toshihiro Hatanaka, Yutaka Maruyama, Naohiro Miyamura and Yuzuru Eto

Article link: http://www.jbc.org/content/285/2/1016.abstract

For more information, contact Ms. Naoko Obara, Public Communications Department, Ajinomoto Co., Inc., Japan; Email: naoko_obara@ajinomoto.com

The American Society for Biochemistry and Molecular Biology is a nonprofit scientific and educational organization with over 12,000 members in the United States and internationally. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, nonprofit research institutions and industry. The Society's student members attend undergraduate or graduate institutions.

Founded in 1906, the Society is based in Bethesda, Maryland, on the campus of the Federation of American Societies for Experimental Biology. The Society's purpose is to advance the science of biochemistry and molecular biology through publication of the Journal of Biological Chemistry, the Journal of Lipid Research, and Molecular and Cellular Proteomics, organization of scientific meetings, advocacy for funding of basic research and education, support of science education at all levels, and promoting the diversity of individuals entering the scientific work force.

For more information about ASBMB, see the Society's Web site at www.asbmb.org.

Nick Zagorski | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>