Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A response key for survival of Mycoplasma genitalium in the urogenital tract uncovered

08.01.2020

Metals (iron, zinc, nickel, cobalt, etc.) participate in numerous enzymatic reactions and are essential nutrients for bacteria. Inside our organism, these metals are scarcely available, because they are bound to proteins which preserve and transport them to the cells and tissues where they will be used.

During the infection process, bacteria compete with the organism in obtaining these metals. The response to metal starvation is often very virulent, bringing on strategies aimed to increase the supply of these elements.


Behaviour of bacteria within the host organism in conditions in which the metals inside the bacteria are abundant (left) or scarce (right). In the second case, a defence response is activated (expression of transport proteins, toxin, etc.) to increase the availability of these nutrients, such as breaking erythrocytes and releasing the metals inside these cells. Illustration created using BioRender.

Credit: IBB-UAB

Metal acquisition is often achieved by releasing toxins, proteins that bind metals with high affinity and transporters that introduce these metals into the bacteria.

In essence, these are highly sophisticated virulence mechanisms aimed at guaranteeing the support of essential nutrients needed for the bacteria's survival.

A research team led by the Institute of Biotechnology and Biomedicine of the Universitat Autònoma de Barcelona (IBB-UAB) has discovered the regulation and metal uptake systems of Mycoplasma genitalium (Mge).

This emerging sexually transmitted pathogen is responsible for several genitourinary diseases and is becoming a superbacterium thanks to its emerging resistance to the antibiotics used against it.

Researchers have managed to identify the protein that regulates metal uptake, the Ferric Uptake Regulator (Fur), as well as other proteins responsible for transporting the metals into the microorganism.

"Through transcriptomic and proteomic techniques, we were able to determine the changes in Mge's gene expression in the presence and absence of metals", states Carlos Martínez, lead author of the study. "Moreover, we were able to identify the metals that bacteria require for growth using a mass spectrometry analysis developed by the UAB Analytical Chemistry Unit", explains Sergi Torres, co-author of the study.

"The regulation and metal transport systems identified in Mge represent very attractive therapeutic targets. This study will allow us to develop strategies to block metal acquisition through inhibitors or immunotherapy", says Òscar Quijada, researcher at the IBB-UAB and coordinator of the study.

In fact, researchers have already begun working in this direction, in collaboration with the UAB Department of Biophysics and the Microbiology Units of the Parc Taulí and Vall d'Hebron hospitals.

###

The research was recently published in the journal Emerging Microbes and Infections and included the involvement of researchers from the IBB, the UAB Department of Biophysics and the Vall d'Hebron Institute of Oncology.

Media Contact

María Jesús Delgado
MariaJesus.Delgado@uab.cat
34-935-814-049

 @UAB_info

http://www.uab.es 

María Jesús Delgado | EurekAlert!
Further information:
https://www.uab.cat/web/newsroom/news-detail/discovery-of-an-adaptation-process-key-to-the-survival-of-em-mycoplasma-genitalium-/em-in-the-urogenital-tract-1345668003610.html?noticiaid=1345804190737
http://dx.doi.org/10.1080/22221751.2019.1700762

More articles from Life Sciences:

nachricht Life's clockwork: Scientist shows how molecular engines keep us ticking
14.01.2020 | University of North Carolina Health Care

nachricht World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body
14.01.2020 | Universitätsspital Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

Im Focus: LZH’s MOMA laser ready for the flight to Mars

One last time on Earth it has been turned on in France in December 2019. The next time the MOMA laser developed by the Laser Zentrum Hannover e.V. (LZH) is going into operation will be on Mars. The ExoMars rover into which the laser is integrated has now successfully passed the thermal vacuum tests at Airbus in Toulouse, France.

For 18 days the ExoMars rover Rosalind Franklin was subjected to thermal vacuum tests at Airbus. There, it had to withstand strong changes in temperature and...

Im Focus: Atacama Desert: A newly discovered biocoenosis of lichens, fungi and algae shapes entire landscapes

The Atacama Desert in Chile is the oldest and most arid desert on earth. Organisms living in this area have adapted to the extreme conditions over thousands of years. A research team led by Dr Patrick Jung has now discovered and investigated a previously unknown biocoenosis of lichens, fungi, cyanobacteria and algae. It colonises tiny stones, so-called grit and its need for water is satisfied by fog and dew. These organisms also decompose the rock on and in which they live. The scientists believe that this is how they have shaped the landscape of the Atacama Desert. Their study was published in the renowned scientific journal "Gebiology".

Many desert areas have large black spots in the sand. These spots are mineral deposits, so-called desert varnish. In the Atacama Desert, which can be compared...

Im Focus: Nano antennas for data transfer

For the first time, physicists from the University of Würzburg have successfully converted electrical signals into photons and radiated them in specific directions using a low-footprint optical antenna that is only 800 nanometres in size.

Directional antennas convert electrical signals to radio waves and emit them in a particular direction, allowing increased performance and reduced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

International Coral Reef Symposium 2020 Holds Photo Competition

19.12.2019 | Event News

The Future of Work

03.12.2019 | Event News

 
Latest News

Scientists in Mainz develop a more sustainable photochemistry

14.01.2020 | Life Sciences

Laserphysics: At the pulse of a light wave

13.01.2020 | Physics and Astronomy

New function for potential tumor suppressor in brain development

13.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>