Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel oncogenic network specific to liver cancer initiation

08.10.2012
The results provide a basis for potential HCC preventive strategies

Researchers headed by Erwin Wagner, the Director of the BBVA Foundation-CNIO Cancer Cell Biology Programme at the Spanish National Cancer Research Centre (CNIO), have deciphered how a stress-inducible gene regulator, AP-1, controls the survival of liver tumor-initiating cells. These results, published in the online edition of Nature Cell Biology, could provide new preventive strategies and identify potentially targetable molecules to prevent liver cancer.

Hepatocellular carcinoma (HCC) causes more than 500,000 deaths per year worldwide. While patients with chronic hepatitis virus B and C infections or liver cirrhosis are high-risk populations for HCC, measures aiming at preventing HCC development in these patients are limited. In addition, the long-term prognosis after surgical resection of HCC remains poor, due to the high rate of de novo recurrence and the lack of effective preventive therapy.

The critical step for developing effective preventive therapies, but also diagnostic markers and preventive strategies is to identify targetable molecules and pathways responsible for cancer initiation.

Using genetic mouse models specific for liver cancer initiation, researchers have discovered how the stress-inducible AP-1 gene regulator modulates liver tumor cell death in early stages of liver cancer. Mechanistically, AP-1 controls the expression of the epigenetic modulator SIRT6. Subsequently, SIRT6 represses Survivin, which is involved in programmed cell death.

Importantly, altering these proteins in mice even transiently during the initiation stage markedly impaired liver cancer development in mice.

The relevance of these findings was tested in more than 150 human tissue samples collected in patients from Asia and Europe. A clear correlation between these proteins and liver cancer initiation, but not in advanced HCCs, was observed.

These results connect liver cancer initiation with epigenetics and cell death, and give new insights into why patients with metabolic diseases where SIRT6 is important, are at risk of developing of liver cancer.

"Our study provides not only novel implications for the development of preventive therapies for high risk cirrhotic or post-resection patients, but also a new paradigm how one can molecularly dissect cancer initiation using mouse models in combination with the appropriate human samples", states Latifa Bakiri, author of the study.

The study was initiated in Erwin Wagner´s group at the IMP in Vienna and subsequently carried out at the Spanish National Cancer Research Centre (CNIO) and at the State Key Laboratory of Cell Biology, in Shanghai China led by Lijian Hui.

The study also involves the participation of clinical researchers at Fudan University in Shanghai and the Medical University of Graz, Austria.

Juan J. Gomez | EurekAlert!
Further information:
http://www.cnio.es

More articles from Life Sciences:

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Record levels of mercury released by thawing permafrost in Canadian Arctic
13.12.2018 | University of Alberta

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>