Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018

The research groups led by Dr. Jörg Mansfeld of the Biotechnology Center of the TU Dresden (BIOTEC) and Dr. Caren Norden of the Max Planck Institute for Molecular Cell Biology and Genetics (MPI-CBG) have developed a novel synthetic antibody that paves the way for an improved functional analysis of proteins. They combined auxin-inducible “protein knockdown” with a synthetic antibody to not only observe fluorescent proteins in living cells but also to rapidly remove them in a temporally controlled manner.

Perhaps the most important basic component of all cells are proteins that perform a wide variety of functions in cells and tissues. In order to clarify the physiological roles of proteins, they are often linked to a green fluorescent protein (GFP) via targeted genetic manipulation, which makes them visible under the microscope.


Microscopic image of living HeLa cells

Joerg Mansfeld


Dr. Joerg Mansfeld

Magdalena Gonciarz

The observation of such GFP-linked proteins in living cells allows initial conclusions about the function of the protein. However, the exact function of a protein can often only be determined when the protein is removed and the resulting consequences become visible in cells, tissues or model organisms.

This is usually achieved by knockout of the protein on the genetic level. However, the functions of essential proteins cannot be examined in this way, because the cell or the model organism would not be viable. Instead, an approach is needed that allows removing proteins from cells only at a specific time.

Such a targeted temporary degradation of proteins occurs naturally in plants and is mediated by the plant hormone auxin. After genetic manipulation, the underlying mechanism can also be applied to animal and human cells.

Dr. Jörg Mansfeld's research group has developed a novel AID-nanobody in order to not only observe GFP-linked proteins in living cells, but to also rapidly degrade them in a targeted manner for functional analysis. For this purpose, the auxin recognition sequence (AID) was linked to a GFP recognizing antibody that is structurally-related to camelid antibodies (nanobody).

It could be shown that this so-called AID-nanobody allows the almost complete degradation of GFP-linked proteins in human cell culture after the addition of auxin. The possibility to follow the degradation of the protein "live" under the microscope makes functional analysis much easier.

In collaboration with the research group of Dr. Caren Norden, it was shown that the AID-nanobody can also be successfully used in the model organism zebrafish. Using the AID-nanobody in zebrafish demonstrated for the first time that an auxin-mediated protein knockdown can also be implemented in a complex vertebrate model.

"Our work is an excellent example of biotechnology, in which different naturally occurring principles such as fluorescent GFP from algae, auxin-dependent protein degradation from plants and the nanobody from camelids are combined to answer previously inaccessible research questions," said Dr. Katrin Daniel from the Mansfeld Lab, commenting on the results of the research project.

The successful work highlights the synergies that can be achieved, when groups from different research institutes at the Dresden Science Campus work closely together.

Funding
Jörg Mansfeld is supported by the German Research Foundation (DFG) (Emmy Noether; MA 5831/1-1) and receives funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 680042). Katrin Daniel received funding from the Maria-Reiche-Programme of the TU Dresden. Caren Norden was supported by the German Research Foundation (DFG) [SFB 655, A25] and the by the Human Frontier Science Program (CDA-00007/2011).

Caption: Microscopic image of living HeLa cells containing a GFP-linked protein (green) and the AID nanobody (magenta). After addition of the plant hormone auxin, the GFP-linked protein is broken down specifically in the cells containing AID nanobody within 30 minutes. © Jörg Mansfeld

Media inquiries:
Friederike Braun, M.A. (PR Officer)
Tel.: +49 351 458 82064
E-Mail: friederike.braun@tu-dresden.de

The Biotechnology Center was founded in 2000 as a central scientific unit of the TU Dresden with the goal of combining modern approaches in molecular and cell biology with the traditionally strong engineering in Dresden. Since 2016 the BIOTEC is part of the central scientific unit “Center for Molecular and Cellular Bioengineering” (CMCB) of the TU Dresden. The BIOTEC plays a central role in the “Molecular Bioengineering and Regenerative Medicine” profile of the TU Dresden, fostering developments in the new field of Biotechnology/Biomedicine. The center focuses on cell biology, nanobiotechnology, and bioinformatics.

www.tu-dresden.de/biotec

Originalpublikation:

Katrin Daniel, Jaroslav Icha, Cindy Horenburg, Doris Müller, Caren Norden and Jörg Mansfeld: "Conditional control of fluorescent protein degradation by an auxin-dependent nanobody".
DOI: 10,1038/s41467-018-05855-5
Nature Communication: http://www.nature.com/ncomms

Weitere Informationen:

http://www.mansfeldlab.com
http://www.mpi-cbg.de/de/forschungsgruppen/uebersicht/caren-norden/group-leader/

Kim-Astrid Magister | Technische Universität Dresden

More articles from Life Sciences:

nachricht Making better use of enzymes: a new research project at Jacobs University
19.09.2018 | Jacobs University Bremen gGmbH

nachricht Novel carbon source sustains deep-sea microorganism communities
18.09.2018 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Is the Baltic Sea acidifying?

19.09.2018 | Earth Sciences

Supported by software, Kaiserslautern architects assemble wooden dome like a puzzle

19.09.2018 | Architecture and Construction

World's first passive anti-frosting surface fights ice with ice

18.09.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>