Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new way to map cell regulatory networks

06.03.2019

Tool reduces material needed to ID transcription factors regulating gene expression

Faster results. Lower costs. Fewer cells.


Scientists report in Genome Research a new mathematical method that makes it easier to conduct more of the complex data analysis needed to advance the exploding field of personalized medicine. They were able to use vastly less biological material to identify a network of protein transcription factors (TFs) that regulate the function of T Helper 17 (TH17) cells, an immune cell type that defends against bacterial and fungal infections but also can lead to autoimmune diseases when malfunctioning. In this image, bolded gene names correspond to transcription factors (TFs). Connections between TFs and genes are colored red for activation or blue for inhibition of gene expression.

Credit: Cincinnati Children's

A new mathematical method developed by researchers at Cincinnati Children's and New York University may soon make it much easier to conduct more of the complex data analysis needed to drive advances in the exploding field of personalized medicine.

Proof-of-principle results for the method are reported this month in Genome Research. The co-authors say they were able to use vastly less biological material to reproduce--and even expand upon--an expensive previous effort to identify a network of protein transcription factors (TFs) that regulate the function of T Helper 17 (TH17) cells, an immune cell type that defends against bacterial and fungal infections but also can lead to autoimmune diseases when malfunctioning.

The learnings regarding TH17 cells are significant in their own right, researchers say. The data adds several TFs to the known transcriptional regulatory network (TRN) that controls how TH17 cells behave. This, in years to come, could lead to better treatments for autoimmune diseases like multiple sclerosis, psoriasis and inflammatory bowel disease.

However, this discovery's potential impact may reach much further.

"This method could be applied to any cell type, and could provide new information on how targeted cell types could be controlled in a wide range of diseases," says Emily Miraldi, PhD, a computational biologist at Cincinnati Children's and lead author on the new study.

In years to come, detailed knowledge about the TRNs controlling specific cell types could help researchers find precise ways to ramp up immune system responses to attack cancer tumors or tamp down responses to treat a variety of immune diseases, Miraldi says.

From 10-million-cell samples to as few as 500

Using current methods, researchers have learned much about how gene expression can differ among healthy and unhealthy people. But learning how to safely influence gene expression to improve health involves drilling deeper into how TRNs orchestrate behavior in specific cell types, locations and conditions.

In many diseases, especially rare ones, it can be difficult to impossible to gather enough cells of interest to conduct such analyses, Miraldi says.

For example, detailing the initial regulatory network for TH17 cells relied on data from chromatin immunoprecipitation sequencing (ChIP-seq), a breakthrough technology introduced about a decade ago.

But that tool requires as many as 10 million cells to work. The methods used by Miraldi and colleagues produced similar results with 100 times fewer cells. In fact, in some cases, data could potentially be obtained from samples with as few as 500 cells.

In the new approach, the research team used an improved version of a gene expression modeling algorithm called "Inferelator" that integrates data from a newer technique called assay for transposase-accessible chromatin (ATAC-seq).

ATAC-seq zeroes in only on the portions of chromatin--the long, coiled strands of DNA within each cell--that are "open" for transcription factors to bind. "ATAC-seq is a possible alternative to multiple ChIP-seq experiments. I call it a poor man's ChIP-seq," Miraldi says.

Analysis of ATAC-seq information required several other tools as well, including a massive database (CisBP) of transcription factor binding preferences for thousands of transcription factors. The CisBP database was assembled by a team led by Cincinnati Children's computational biologist Matthew Weirauch, PhD.

If the upgraded Inferelator algorithm proves as useful as hoped, it could help reduce some of the need for animal research. Instead of spending months raising hundreds of carefully gene-modified mice to produce an adequate supply of a targeted cell type, it may become possible to obtain valid results using cell samples from as few as two or three mice, Miraldi says.

More study needed to apply and improve the new method

Miraldi and colleagues have already begun pursuing two lines of study related to this discovery.

One project applies the new method to construct TRNs for intestinal immune cells in vivo.

Another project seeks to refine the new method so that it can be applied to even smaller samples, such as those isolated from human patients using single-cell genomics.

###

Funding sources for this work include a Cincinnati Children's Trustee Award; the Simons Foundation; the National Institutes of Health (5T32AI100853, R01-DK103358-01, R01-GM112192-01, T32 CA009161); the Howard Hughes Medical Institute; the Colton Center for Autoimmunity; Crohn's and Colitis Foundation of America; the Damon Runyon Cancer Research Foundation; and the Laura and Isaac Perlmutter Cancer Center.

Tim Bonfield | EurekAlert!
Further information:
http://dx.doi.org/10.1101/gr.238253.118

Further reports about: CANCER TFs TH17 autoimmune diseases cell type cell types transcription factors

More articles from Life Sciences:

nachricht To proliferate or not to proliferate
21.03.2019 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Discovery of a Primordial Metabolism in Microbes
21.03.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>