Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new toxin in Cholera bacteria discovered by scientists in Umeå

21.06.2018

Scientists affiliated with MIMS and UCMR describe their findings about a new toxin and its secretion mechanism from the major bacterial pathogen Vibrio cholerae in a recent publication in the journal Communications Biology (7 June 2018).

The bacterium Vibrio cholerae was discovered more than 150 years ago but remains as one of the main causes of bacterial infectious disease globally, especially in low-income nations where it occurs endemic, and outbreaks of cholera disease can lead to major epidemics.


Fluorescence micrographs of the worm Caenorhabditis elegans infected with MakA toxin marked with green fluorescencent protein. The arrows show the twisted intestines

Nature Communications Biology

In addition to causing cholera disease characterized by very severe watery diarrhea, different variants of V. cholerae can cause, for example, wound infections and infections in the ear canal (ear inflammation). If the infection is reaching the bloodstream, it can lead to blood poisoning. Such variants of Vibrio bacteria are common in brackish water, but can be found both in freshwater and saltwater and are also present in such environments in our country.

Scientists from Umeå University have now discovered and characterised the structure and function of a so far unknown Vibrio toxin. A team led by Professor Sun Nyunt Wai at Department of Molecular Biology and MIMS used the worm Caenorhabditis elegans as a predatory host for the bacteria and identified by molecular genetic analysis the V. cholerae genes required for production and release of the new protein toxin, now called MakA.

“In addition to the toxicity of MakA demonstrated with C. elegans, our studies revealed that upon infection of Zebrafish the toxin caused damage in particular to the intestinal system," explains Sun Nyunt Wai.

Sun Nyunt Wai and her colleagues were also curious about the details of the bacterial release mechanism of the newly discovered toxin from V. cholerae.

Vibrio cholerae is a motile bacterium, able to swim in fluids, driven by a rotating flagellum at the back of the cell. The scientists found that the flagellum of this bacterium not only is used as the mechanism for motility but also for the release of the MakA toxin.

“Using a combination of electron microscopy and light microscopy with molecular genetic methods we obtained evidence that this protein toxin is transported through the channel of the flagellum filamentous structure”, Sun Nyunt Wai explains.

This is the first time that scientists show how the flagellum functions as a secretion apparatus for a toxin from Vibrio cholerae.

Regarding the aim of these studies Sun Nyunt Wai explains: “In order to fully understand the disease-causing properties, and the distinctive ability of V. cholerae to survive and spread in different environments, it is important to study not only factors important for colonization and growth in human infections. Our aim was to also identify factors that may have evolved to be decisive for the environmental impact of the bacterium in competition with other microorganisms and for survival where there are predatory organisms. Our findings about MakA demonstrate that it is a novel cytotoxin affecting both vertebrate and invertebrate hosts.”

In the future, Sun Nyunt Wai and her colleagues would like to study also the effects and role of the MakA toxin in natural systems.

"Of course, we also want to find out if MakA might be responsible for some of the fish deaths in natural environments, and e.g in fisheries". An immunization of the breeding fish against MakA would be a nice solution instead of treating the fish with antibiotics.

Scientists (and their affiliations) involved in the study:

Mitesh Dongre, Bhupender Singh, Kyaw Min Aung, Per Larsson, Regina Miftakova, Jenny L. Persson, Bernt Eric Uhlin, Sun Nyunt Wai (Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS, mims.umu.se), Umeå Centre for Microbial Research (UCMR, www.ucmr.umu.se) Umeå University)
Karina Persson (Department of Chemistry and UCMR, Umeå University)
Simon Tuck, Jonas von Hofsten (Umeå Centre for Molecular Medicine (UCMM, ucmm.umu.se) and UCMR, Umeå University)
Fatemeh Askarian, Mona Johannessen (Department of Medical Biology, UiT- The Arctic University of Norway, Tromsø, Norway
Mark Erhardt (Helmholtz Centre for Infection Research, Braunschweig, Germany)
The orginal publication:
Mitesh Dongre, Bhupender Singh, Kyaw Min Aung, Per Larsson, Regina Miftakhova, Karina Persson, Fatemeh Askarian, Mona Johannessen, Jonas von Hofsten, Jenny L. Persson, Marc Erhardt, Simon Tuck, Bernt Eric Uhlin & Sun Nyunt Wai (2018). Flagella-mediated secretion of a novel Vibrio cholerae cytotoxin affecting both vertebrate and invertebrate hosts. Communications Biology 1:159; DOI: 10.1038/s42003-018-0065 (www.nature.com/commsbio )

Contact:
Professor Sun Nyunt Wai, Department of Molecular Biology and
The Laboratory for Molecular Infection Medicine Sweden (MIMS)
Umeå Centre for Microbial Research (UCMR)
Umeå University
sun.nyunt.wai@umu.se
Phone: +46 (0)90-785 67 04

Eva-Maria Diehl | idw - Informationsdienst Wissenschaft
Further information:
http://www.vr.se

Further reports about: Molecular Biology UCMR Vibrio cholerae bacterium flagellum

More articles from Life Sciences:

nachricht First use of vasoprotective antibody in cardiogenic shock
17.05.2019 | Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.

nachricht A nerve cell serves as a “single” for studies
15.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>