A New Resource for Advanced Biofuels Research

The JBEI GT Collection, the first glycosyltransferase clone collection specifically targeted for the study of plant cell wall biosynthesis, features GT clones of rice (shown here) and Arabidopsis plants. (Photo by Roy Kaltschmidt)

The idea behind what is being called “the JBEI GT Collection” is to provide a functional genomic resource for researchers seeking to extract the sugars in plant biomass and synthesize them into clean, green and renewable transportation fuels.

Glycosyltransferases (GTs) are enzymes that catalyze the connection of simple monosaccharide sugars into the complex polysaccharide sugars that are essential to a wide range of plant cell structures and processes. While it is known that plants have evolved large families of GTs, the chemical nature of these enzymes is such that the specific functions of most GTs remain largely unknown. This is a major drawback for bioenergy research where the goal is to modify plant biomass for maximum fuel yields.

To address this problem, especially as it pertains to cell wall biosynthesis, a large team of JBEI researchers, led by Joshua Heazlewood, director of JBEI’s Plant Systems Biology program, has cloned and verified a clone library consisting of 403 Arabidopsis GTs and 96 rice GTs. In plant biology, Arabidopsis is the reference plant for species like poplar, and rice the reference plant for grasses.

“Using the unique infrastructure and resources at JBEI, we have provided a collection of high quality GT clones, all of which have been verified by sequencing and are available in easy to use cassettes,” Heazelwood says. “We’re making this entire collection available to the plant research community and expect it to drive our basic understanding of GTs and enable the manipulation of cell walls.”

In addition to the clones for Arabidopsis and rice GTs, Heazlewood and his collaborators at JBEI also created a set of highly efficient particle bombardment plasmids – pBullets – which are plasmids shot into a cell to mark the location of targeted proteins. The JBEI pBullets are constructed with markers for the plant endomembrane system, the collection of membranes that separates a cell’s functional and structural compartments.

“Our pBullet vector series is custom designed for efficient bombardment,” Heazlewood says. “Researchers generally use large unwieldy plasmids that perform badly when it comes to localizing proteins.”

While the 403 Arabidopsis clones represent approximately 88-percent of the defined Arabidopsis GTs, the 96 rice clones represent only 15-percent of the defined rice GTs. JBEI researchers are now working to expand this. Both the JBEI GT Collection and pBullet vector series are available to the research community through various outlets. For more information visit the Website at http://gt.jbei.org/

Heazlewood and his collaborators have published a paper on the JBEI GT Collection in The Plant Journal. The paper is titled “The Plant Glycosyltransferase Clone Collection for Functional Genomics.” Co-authors were Jeemeng Lao, Ai Oikawa, Jennifer Bromley, Peter McInerney, Anongpat Suttangkakul, Andreia Smith-Moritz, Hector Plahar, Tsan-Yu Chiu, Susana González Fernández-Niño, Berit Ebert, Fan Yang, Katy Christiansen, Sara Hansen, Solomon Stonebloom, Paul  Adams, Pamela Ronald, Nathan Hillson, Masood Hadi, Miguel Vega-Sánchez, Dominique Loqué and Henrik Scheller.

This research was funded by the U.S. Department of Energy’s Office of Science.

Additional Information For more about the Joint BioEnergy Institute go here

Media Contact

Lynn Yarris Eurek Alert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors