Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new look at thyroid diseases

28.10.2016

Thyroid disorders are frequently found in about one-third of the adult population in Germany. In a research project of the German Research Foundation (DFG), scientists at Jacobs University are asking how the healthy thyroid works. Their findings might help adapting diagnosis and therapy of thyroid diseases.

The little butterfly-shaped organ is a powerhouse. A thyroid that releases too much or too little hormone can trigger a wide variety of health problems: For example cardiovascular disease, osteoporosis, morbid obesity, or immune diseases. The organ can also play a role in depression.


Photo information: They discover how a healthy thyroid works: Maren Rehders, Professor Klaudia Brix, Vaishnavi Venugopalan und Maria Qatato from Jacobs University (from left to right).

Photo: Jacobs University

“The importance of a healthy thyroid has been known for more than 100 years. All the more astounding that there are some aspects about the functioning of this organ and its interaction with other organs that are still unknown,” says Klaudia Brix, Professor of Cell Biology at Jacobs University. She and her team now hope to close some of these gaps in knowledge.

“Thyroid Trans Act” is the DFG-supported priority program SPP 1629 coordinated by Klaudia Brix at Jacobs University, Professor Heike Biebermann at the Charité in Berlin, and Professor Dagmar Führer at the Essen University Medical Center. A total of 18 research institutes throughout Germany are participating.

“We come from very different research institutions, but we have the same goal: We want to understand better how the thyroid functions. That connects us,” says Vaishnavi Venugopalan, one of the young scientists on the project team at Jacobs University. “The collaboration with other research institutions is really good,” adds her colleague Maren Rehders. “It is a very open, collegial exchange, without any competition thinking.”

Like other research teams at Jacobs University, the thyroid researchers also comprise an international community: Vaishnavi Venugopalan comes from India, Maren Rehders and Klaudia Brix from Germany, their colleagues Maria Qatato and Joanna Szumska from Palestine and Poland. An intercultural team in an interdisciplinary research community pursuing complex problems. “It is exciting to do research in such an environment, and on a topic that is important to so many people,” says Maria Qatato.

The researchers are focusing particularly on the so-called thyroid hormone transport molecules. “For a long time, it was believed that the thyroid hormones simply diffuse from the circulatory system into the cells of individual target organs,” explains Klaudia Brix. In the meantime, we know that the route of uptake into the cells is substantially more complex. Because there are transport proteins in the cell membrane. They ensure that the hormones get into the respective target cells, or that they can be released from the thyroid cells into the blood. An impaired function of these thyroid hormone transport proteins can have major effects on health.”

This finding is approximately 15-years old finding, and it has led to new scientific interest in the thyroid gland. “The important notion here is not just the question of how many hormones the thyroid produces but also how they are taken up at the destination, meaning by the cells of the respective thyroid hormone target organ. Our approach is therefore not to consider the thyroid in isolation but also to get a better understanding of those cell functions that are directed by thyroid hormones.”

The complexity of the interactions among the thyroid and the metabolism of the body are shown, for example, by the thyronamines. These are molecules derived from the classical thyroid hormones. They are generated from the thyroid hormones by specific biochemical processes. In human organs, the derivatives resulting from such transformation processes may exert effects that are opposite to those of the classic thyroid hormones. For instance, a hormone that leads to elevated blood pressure, may in some circumstances have as a counterpart a thyronamine that lowers blood pressure. Brix speaks of a precision regulated balance. “Like in a scale.”

What does it mean for people, when this balance no longer exists? The researchers at Jacobs University are confident that the discovery of thyronamines can lay the cornerstone to a better understanding of some metabolic pathways. But they also know that these are part of complex interrelationships. “Before we can think about new drugs, we have to understand even better the concentration and precise composition of the thyronamines in the body,” says Klaudia Brix. “We are convinced: The better we succeed in doing so, the more it will be possible to provide targeted therapy to people with thyroid disorders. That prospect, in particular, is motivating.“

Additional information:
http://www.thyroidtransact.de/
http://brixgroup.user.jacobs-university.de/
https://www.jacobs-university.de/directory/kbrix

Questions will be answered by:
Prof. Dr. Klaudia Brix| Professor of Cell Biology
k.brix@jacobs-university.de | Tel.: +49 421 200- 3246

About Jacobs University:
Jacobs University is a private, independent, English-language university in Bremen. Young people from all over the world study here in preparatory, Bachelor, Master, and PhD programs. Internationality and transdisciplinarity are special features of Jacobs University: research and teaching don’t just pursue a single approach, they address issues from the perspectives of multiple disciplines. This principle makes Jacobs graduates highly sought-after new talents who successfully strike out on international career paths.

Contact:
Kristina Logemann | Brand Management, Marketing & Communications
k.logemann@jacobs-university.de | Tel.: +49 421 200-4454

Kristina Logemann | idw - Informationsdienst Wissenschaft

Further reports about: Biology blood pressure proteins thyroid hormone

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>