Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new giant virus found in the waters of Oahu, Hawaii

03.05.2018

Researchers at the Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE) at the University of Hawai'i (UH) at Mānoa have characterized a new, unusually large virus that infects common marine algae. Found in the coastal waters off Oahu, Hawai'i, it contains the biggest genome ever sequenced for a virus infecting a photosynthetic organism.

"Most people are familiar with viruses," said Christopher Schvarcz, the UH Mānoa oceanography graduate student who led the project as part of his doctoral dissertation, "because there are so many that cause diseases in humans. But we are not alone; even the microscopic plankton in the ocean are constantly battling viral infections."


Coastal waters can turn green as shown here at Waimanalo Beach (left panel) when tiny single-celled algae in the genus Tetraselmis (inset) grow to high concentrations.

Credit: Lydia Baker, UH Manoa, SOEST

Usage Restrictions: Image may only be used with appropriate caption and credit


The virus TetV is able to replicate inside the algal cell (right panel, scale bar=1 μm), ultimately killing the cell and releasing free virus particles (inset, scale bar 0.2 μm).

Credit: Christopher Schvarcz, UH Manoa, SOEST

Usage Restrictions: Image may only be used with appropriate caption and credit

Much of the phytoplankton that grows in the ocean every day gets eaten, thereby sustaining animals in the marine food web. It is common, however, for viral infections to spread through populations of phytoplankton. When this happens, the infected phytoplankton cells disintegrate and are decomposed by bacteria, diverting that food source away from the animals.

"That sounds bad," said Grieg Steward, professor in the UH Mānoa Department of Oceanography and co-author on the study, "but viruses actually help maintain balance in the marine ecosystem. Viruses spread more efficiently through highly concentrated populations, so if one type of phytoplankton grows faster than the others and starts to dominate, it can get knocked down to lower levels by a viral infection, giving the other species a chance to thrive."

Viruses have to replicate inside of cells, putting some constraints on how big they can be, but the known upper size limit of viruses has been creeping upward over the past 15 years as researchers have focused on finding more examples of what are now referred to as "giant" viruses.

"Most viruses are so tiny that we need an electron microscope to see them," said Steward "but these giants rival bacteria in size, and their genomes often code for functions we have never seen in viruses before."

The virus described by Schvarcz and Steward in their recent paper in the journal Virology was named TetV-1, because it infects single-celled algae called Tetraselmis. After sequencing its genome, Schvarcz discovered that the virus has a number of genes that it seems to have picked up from the alga it infects. Two of these appear to code for enzymes involved in fermentation, which is a process used by microorganisms to get energy from sugars in the absence of oxygen. Fermentation is familiar to many of us, because it is the key to making beer, wine, and spirits. Why would a virus need these genes? The authors don't know for sure, but they have a guess.

"Tetraselmis can grow to extraordinarily high concentrations in coastal waters," explains Schvarcz, "turning the water from clear blue to an intense green. If TetV were to spread under those conditions, huge numbers of cells would succumb to viral infection. Bacteria would immediately begin decomposing the dead algae and quickly use up all the oxygen in the water. We think that the fermentation genes in TetV may allow the virus to maintain its energy flow under low oxygen conditions even as it shuts down the host cell systems."

Schvarcz and Steward plan to conduct field and lab experiments to test whether this idea is correct. Tetraselmis is used as a food source for aquaculture and as a source of starch for the biofuel industry, so the authors speculate that understanding exactly how TetV manipulates the metabolism of its host might have some practical applications. The ability of TetV to inject DNA into these cells might be exploited, for example, to reprogram the algae to make more of a desired product.

"We have more to learn about this particular virus," mused Steward "and its just one example plucked from an ocean that has millions of them floating in every teaspoon."

Considering the numbers, it seems certain there are many more unusual viruses waiting to be discovered just under the next wave.

Media Contact

Marcie Grabowski
mworkman@hawaii.edu
808-956-3151

 @UHManoaNews

http://manoa.hawaii.edu 

Marcie Grabowski | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.virol.2018.03.010

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers watch quantum knots untie

After first reporting the existence of quantum knots, Aalto University & Amherst College researchers now report how the knots behave

A quantum gas can be tied into knots using magnetic fields. Our researchers were the first to produce these knots as part of a collaboration between Aalto...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Composite metal foam outperforms aluminum for use in aircraft wings

23.10.2019 | Materials Sciences

Researchers watch quantum knots untie

23.10.2019 | Physics and Astronomy

A technology to transform 2D planes into 3D soft and flexible structures

23.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>