Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new giant virus found in the waters of Oahu, Hawaii

03.05.2018

Researchers at the Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE) at the University of Hawai'i (UH) at Mānoa have characterized a new, unusually large virus that infects common marine algae. Found in the coastal waters off Oahu, Hawai'i, it contains the biggest genome ever sequenced for a virus infecting a photosynthetic organism.

"Most people are familiar with viruses," said Christopher Schvarcz, the UH Mānoa oceanography graduate student who led the project as part of his doctoral dissertation, "because there are so many that cause diseases in humans. But we are not alone; even the microscopic plankton in the ocean are constantly battling viral infections."


Coastal waters can turn green as shown here at Waimanalo Beach (left panel) when tiny single-celled algae in the genus Tetraselmis (inset) grow to high concentrations.

Credit: Lydia Baker, UH Manoa, SOEST

Usage Restrictions: Image may only be used with appropriate caption and credit


The virus TetV is able to replicate inside the algal cell (right panel, scale bar=1 μm), ultimately killing the cell and releasing free virus particles (inset, scale bar 0.2 μm).

Credit: Christopher Schvarcz, UH Manoa, SOEST

Usage Restrictions: Image may only be used with appropriate caption and credit

Much of the phytoplankton that grows in the ocean every day gets eaten, thereby sustaining animals in the marine food web. It is common, however, for viral infections to spread through populations of phytoplankton. When this happens, the infected phytoplankton cells disintegrate and are decomposed by bacteria, diverting that food source away from the animals.

"That sounds bad," said Grieg Steward, professor in the UH Mānoa Department of Oceanography and co-author on the study, "but viruses actually help maintain balance in the marine ecosystem. Viruses spread more efficiently through highly concentrated populations, so if one type of phytoplankton grows faster than the others and starts to dominate, it can get knocked down to lower levels by a viral infection, giving the other species a chance to thrive."

Viruses have to replicate inside of cells, putting some constraints on how big they can be, but the known upper size limit of viruses has been creeping upward over the past 15 years as researchers have focused on finding more examples of what are now referred to as "giant" viruses.

"Most viruses are so tiny that we need an electron microscope to see them," said Steward "but these giants rival bacteria in size, and their genomes often code for functions we have never seen in viruses before."

The virus described by Schvarcz and Steward in their recent paper in the journal Virology was named TetV-1, because it infects single-celled algae called Tetraselmis. After sequencing its genome, Schvarcz discovered that the virus has a number of genes that it seems to have picked up from the alga it infects. Two of these appear to code for enzymes involved in fermentation, which is a process used by microorganisms to get energy from sugars in the absence of oxygen. Fermentation is familiar to many of us, because it is the key to making beer, wine, and spirits. Why would a virus need these genes? The authors don't know for sure, but they have a guess.

"Tetraselmis can grow to extraordinarily high concentrations in coastal waters," explains Schvarcz, "turning the water from clear blue to an intense green. If TetV were to spread under those conditions, huge numbers of cells would succumb to viral infection. Bacteria would immediately begin decomposing the dead algae and quickly use up all the oxygen in the water. We think that the fermentation genes in TetV may allow the virus to maintain its energy flow under low oxygen conditions even as it shuts down the host cell systems."

Schvarcz and Steward plan to conduct field and lab experiments to test whether this idea is correct. Tetraselmis is used as a food source for aquaculture and as a source of starch for the biofuel industry, so the authors speculate that understanding exactly how TetV manipulates the metabolism of its host might have some practical applications. The ability of TetV to inject DNA into these cells might be exploited, for example, to reprogram the algae to make more of a desired product.

"We have more to learn about this particular virus," mused Steward "and its just one example plucked from an ocean that has millions of them floating in every teaspoon."

Considering the numbers, it seems certain there are many more unusual viruses waiting to be discovered just under the next wave.

Media Contact

Marcie Grabowski
mworkman@hawaii.edu
808-956-3151

 @UHManoaNews

http://manoa.hawaii.edu 

Marcie Grabowski | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.virol.2018.03.010

More articles from Life Sciences:

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

nachricht Biological signalling processes in intelligent materials
18.07.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>