Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new mouse could help understand how some lung cancer cells evade drug treatment

10.12.2009
Drug resistant lung cancer cells change their behavior in ways we do not understand to evade treatment, but these events can now be recapitulated and studied in mice
Lung cancer is the leading cause of cancer mortality worldwide and lung adenocarcinoma is the most common type. Many cases of lung adenocarcinoma are attributed to a mutation in a gene for the epidermal growth factor receptor (EGFR).

Lung cancer with changes in EGFR is initially treatable with a family of chemotherapeutic agents called tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib. However, patients often develop resistance to these drugs through the acquisition of additional changes or secondary mutations that allow cancer cells to evade treatment.

Some secondary mutations to the EGFR gene that allow lung cancer cells to survive in the presence of current chemotherapy are known. These secondary changes are now the focus of targeted efforts to create drugs to specifically interfere with the mutated form of the protein. Unfortunately, in 40% of the cases in which patients become resistant to therapy, the molecular events that confer this resistance are not known. Without knowing the changes that sustain the survival of these cells it remains impossible to specifically and effectively target them with anti-cancer drugs.

Scientists now describe a mouse model of lung cancer that develops resistance to TKI drugs in at least some of the same ways that humans do. Lung cancer occurs in these mice due to a mutation in EGFR that is the same as the mutation that underlies many human lung adenocarcinomas. Some of the defined secondary changes to EGFR, which are known to confer drug resistance in humans, also occur in these mice. But most of these drug resistant mice bear tumors that do not contain known mutations. This important similarity to the human situation suggests that this mouse model might help identify the currently unknown mutations that make lung cancer cells resistant to therapy.

Many techniques are now available to unravel the genetic changes that occur in cancer cells. Since these mice recapitulate many of the known mutations that characterize human lung cancer, the hope is that their cells can be screened to identify the currently unknown mutations that promote drug resistance in lung cancer cells. This provides a model to uncover the molecular events responsible for the 40% of patients that become resistant to TKI therapy due to unknown causes. Once novel mechanisms of resistance are identified, these mice might also become valuable preclinical systems to evaluate the efficacy of therapeutics developed to combat drug-resistant disease.

The characterization of mice with drug resistant lung tumors is presented in the Research Report titled 'Erlotinib resistance in mouse models of epidermal growth factor receptor-induced lung adenocarcinoma' and was written by Katerina Politi, Pang-Dian Fan, Ronglai Shen, Maureen Zakowski and Harold Varmus at the Memorial Sloan-Kettering Cancer Center in New York, USA. The study is published in the January/Febuary 2010 issue of the new research journal, Disease Models & Mechanisms (DMM), , published by The Company of Biologists, a non-profit based in Cambridge, UK.

About Disease Models & Mechanisms:

Disease Models & Mechanisms (DMM) is a new research journal, launched in 2008, that publishes primary scientific research, as well as review articles, editorials, and research highlights. The journal's mission is to provide a forum for clinicians and scientists to discuss basic science and clinical research related to human disease, disease detection and novel therapies. DMM is published by the Company of Biologists, a non-profit organization based in Cambridge, UK.

The Company also publishes the international biology research journals Development, Journal of Cell Science, and The Journal of Experimental Biology. In addition to financing these journals, the Company provides grants to scientific societies and supports other activities including travelling fellowships for junior scientists, workshops and conferences. The world's poorest nations receive free and unrestricted access to the Company's journals.

Kristy Kain | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>