Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A molecular delivery service

30.08.2013
Tiny hair-like structures (cilia) are found on the surface of most cells. Cilia are responsible for the locomotion of cells (e.g. sperm cells), they process external signals and coordinate the correct arrangement of the inner organs during the development of an organism.

For proper assembly and function of cilia, they need to be supplied with the appropriate building blocks. Scientists at the MPI of Biochemistry (MPIB) in Martinsried near Munich, Germany, now identified the mechanism of how Tubulin, the main building block of cilia, is transported within the cilium. The results now published in the journal Science could help to understand and potentially prevent these diseases.


Building blocks for the assembly of a cilium are transported from the base to the tip of the cilium.
Copyright: Institut Pasteur, Paris

Although cilia fulfill various tasks, they all have a similar structure: They are only five to ten micrometers (0.0005 to 0.001 centimeters) long and are located on the surface of eukaryotic cells. About 600 different ciliary proteins are synthesized inside the cell and then transported into the cilium. Disruption of this transport system, which scientists call intraflagellar transport (IFT), can lead to errors during the assembly of the cilia and thus cause diseases resulting in mental and physical symptoms. Mistakes in ciliary function can for example cause a “situs inversus”, a condition where the left/right arrangement of the inner organs in the body is reversed.

Even though the importance of the intraflagellar transport (IFT) and the cilium to human health has been known for a long time, a structural and mechanistic understanding of IFT has been missing so far. Scientists from the research group “Intraflagellar Transport” headed by Esben Lorentzen now succeeded in identifying the transport mechanism of the key protein Tubulin. It is the most abundant protein in the cilium and forms its backbone. “We found that the two proteins IFT74 and IFT81 work together to form a tubulin-binding module,” says Sagar Bhogaraju. When the researchers disturbed the binding of IFT74 and -81 to tubulin in human cells, it had severe impact on the formation of the cilia. “Our results provide the first glimpse into the assembly of the cilium at the molecular level,” says the biochemist.

Original Publication:
Bhogaraju, S., Cajanek L., Fort, C., Blisnick, T. , Weber, K., Taschner, M., Mizuno, N., Lamla, S., Bastin, P., Nigg, E. and Lorentzen, E.: Molecular Basis of Tubulin Transport within the Cilium by IFT74 and IFT81, Science, August 30, 2013.

DOI: 10.1126/science.1240985

Contact:
Dr. Esben Lorentzen
Structural Biology of Cilia
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: lorentze@biochem.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Weitere Informationen:
http://www.biochem.mpg.de/1890328/074_Lorentzen_IFT
- Link to the Press Release
http://www.biochem.mpg.de/en/news/pressroom
- Press Releases of the MPI of Biochemistry
http://www.biochem.mpg.de/en/rg/lorentzen
- Website of the Research Group "Intraflagellar Transport"

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de

Further reports about: Biochemistry IFT74 IFT81 IfT MPI Max Planck Institute Tubulin building block

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>