Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A lead to overcome resistance to antibiotics

06.10.2016

Pseudomonas aeruginosa is a common bacterium of our environment. It can however become a formidable pathogen causing fatal infections, especially in intubated patients, people suffering from cystic fibrosis or severe burns. The presence of certain metals in the natural or human environment of the bacterium makes it more dangerous and, in particular, resistant to antibiotics of last resort.

A team of researchers from the University of Geneva (UNIGE), Switzerland, has shown that a specific protein of P. aeruginosa, called Host factor q (Hfq), is essential for reacting to these metals and acquire these new properties. The results, presented in the special issue Virulence Gene Regulation in Bacteria of the journal Genes, single out the Hfq protein as the Achilles heel of P. aeruginosa. Indeed, blocking its action could make this pathogen unable to adapt to a new environment and to resist to certain antibiotics.


Pseudomonas aeruginosa bacteria.

© Karl Perron, UNIGE

Pseudomonas aeruginosa is a ubiquitous bacterium found in both land and water. This organism is known as opportunistic, as it is able to produce various virulence factors and to adapt to its environment to invade, colonize and survive within human beings, taking advantage of a weakening of its host to become pathogenic. The infections it causes are often difficult, if not impossible to treat because of a resistance to many types of antibiotics.

Abnormal amounts of metals

‘We had discovered that high concentrations of metals, such as zinc, could induce a resistance to carbapenems, which are antibiotics of last resort, as well as an increase in the production of virulence factors’, says Karl Perron, researcher at the Department of Botany and Plant Biology of the UNIGE Faculty of Science. This metal may be present in abnormal amounts in the lung secretions of cystic fibrosis patients and in some urinary catheters, contributing to an increase in the pathogenicity of the bacterium and to treatment failure. 

Some antibiotics must penetrate the bacteria to exert their effet. Carbapenems, for example, pass through a specific porin, a sort of channel normally used to import nutrients. When the bacterium is present in an environment containing an excess of zinc, it becomes resistant to carbapenems. ‘We had observed that zinc and other metals induce a suppression of the production of this porin, but we did not know exactly how’, specifies Verena Ducret, biologist in the Geneva group and first author of the article.

Target the bacterium without affecting the host

The team of Karl Perron has solved this enigma by uncovering the central role of a bacterial protein called Host factor q (Hfq). ‘This chaperone, a molecular assistant that allows the bacterium to adjust the synthesis of various proteins according to its needs, inhibits the synthesis of certain porins by intervening at several levels of the production chain’, explains Verena Ducret. By studying a bacterium that does not express Hfq, the scientists have thus discovered a real Achilles heel, because the mutant is unable to respond to zinc and other metals. Therefore, it cannot express its virulence or become resistant to carbapenems in the presence of these metals.

Since the different pathways leading to the inhibition of the production of this porin use Hfq, this chaperone becomes a promising therapeutic target. ‘We are looking for different inhibitors of Hfq that act on Pseudomonas aeruginosa strains. These drugs should counter all of the pathogen’s direct and indirect effects without affecting the host cells, because they do not have proteins such as Hfq’, says Karl Perron.

For further information, please contact:

Julie Michaud

julie.michaud@unige.ch

Julie Michaud | AlphaGalileo

Further reports about: Achilles Pseudomonas aeruginosa aeruginosa antibiotics proteins

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>