Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Grid in the Brain

23.01.2014
How do we mentally calculate the distance between two places? Berlin scientists discover a grid-like network of nerve cells in the brain that could help with spatial orientation—similar to grid lines on city maps.

Animals and humans find their way through the world using an internally generated navigation system. In mammals, components of this navigational system are the hippocampus and the entorhinal cortex.


A grid-like network of nerve cells in the brain (left, and top right) shows a similar hexagonal organization (right, bottom) to the mental map formed by the nerve cells in the brain. Science

These structures memorize and represent our environment in form of a cognitive map, which is a mental representation of space. The representation of space in the entorhinal cortex is particularly fascinating—here, nerve cells discharge in a grid like pattern across space when the animal is moving.

It is thought that this so-called grid cell activity works much like the grid lines on a map providing mammals with a metric for space. So far, it has been unclear how such grid patterns of activated nerve cells are anatomically formed in the brain.

Now, a research team headed by Leibniz prize winner Professor Michael Brecht from the Humboldt-Universität in Berlin, the Cluster of Excellence Neurocure, and the Bernstein Center Berlin has discovered a grid-like network of nerve cells in the entorhinal cortex. By using a protein that binds to calcium in selected nerve cells, the scientists visualized a small circuit of nerve cells. The dendrites of these neurons formed a hexagonal pattern in space that had a striking resemblance to the known grid patterns. Moreover, the neurons in this network showed the same characteristic activity rhythm as the grid cells, when the researchers measured the nerve cell activity in moving animals.

“People have known that the brain divides places into grids, much like we draw lines on a map. However, what was not known is what causes the brain to do it. What we have shown here is the existence of a circuit in the brain, which physically looks like the spatial activity pattern of the so-called grid cells. This makes us think that this circuit structure might be the underlying cause of this representation”, Brecht comments on the study that has been published in the renowned scientific journal Science this Thursday.

Hence, the discovery of the neural network might help us to understand how the brain generates grid lines on our mental maps and how we mentally measure distances. The scientists also hope to gain insight into how the brain forms spatial memories—a brain function which is disturbed or lost in many neurodegenerative diseases such as dementia. On a more fundamental level, how the brain forms spatial memories may be related to how we form memories in general: as in the memory palaces of the ancient Greeks, objects could be linked with places to serve as a mnemonic device.

The Bernstein Center Berlin is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 170 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Prof. Dr. Michael Brecht
Bernstein Center Berlin
Humboldt-Universität zu Berlin
Philippstr. 13, House 6
10115 Berlin
Tel: +49 (0)30 2093 6718
Email: michael.brecht@bccn-berlin.de
Original publication:
S. Ray, R. Naumann, A. Burgalossi, Q. Tang, H. Schmidt & M. Brecht (2014): Grid-layout and Theta-modulation of Layer 2 Pyramidal Neurons in Medial Entorhinal Cortex. Science, Advanced Online Publication.

Weitere Informationen:

http://www.activetouch.de Lab of Michael Brecht
http://www.bccn-berlin.de Bernstein Center Berlin
http://www.hu-berlin.de Humboldt-Universität Berlin
http://wwww.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw
Further information:
http://wwww.nncn.de

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>