Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gene that protects against colorectal cancers

15.12.2011
The research team at Lyon has developed an animal model carrying a mutation of the DCC gene. Mice carrying the mutation develop tumours, because this gene can no longer induce the death of the cancer cells. This discovery could lead to the development of a new targeted cancer treatment that aims to reactivate the dying of cancer cells.

The results of this study have been published as a Letter in the 11th December 2011 issue of the journal Nature.

The team led by Patrick Mehlen, Director of the DEVweCAN 'Laboratory of Excellence' at the Lyon Cancer Research Centre (CNRS/Inserm/Centre Léon Bérard/Université Claude Bernard 1), studies the cell death process (apoptosis) and, in particular, the mechanism that makes the cells understand that they should initiate a self-destruction process when they become abnormal. Patrick Mehlen's team suggested that this mechanism could operate via sentinels located on the surface of cells, which examine their environment. The scientists named these sentinels 'dependence receptors'.

The research team focused on this concept of 'dependence receptors'. When a cell receptor is associated with its ligand, the classic message indicates 'all is well', and leads to cell survival. On the other hand, when the receptor is deprived of its ligand, it can send a message leading to cell death. This mechanism is also called 'apoptosis.' When this is applied to cancer research, the absence of ligands could cause the death of cancer cells that proliferate in an anarchic manner.

In this study, Patrick Mehlen's team shows that the DCC gene (Deleted Colorectal Cancer), which codes for a 'dependence receptor', protects the organism from the onset of cancer by causing the death of cells that become cancerous. The researchers used a mouse model where the DCC gene has been genetically modified. The mutation of this dependence receptor prevents the induction of apoptosis. When the DCC gene is eliminated by mutation, the mouse spontaneously develops colon cancer.

'The organism is naturally protected from the development of cancers thanks to the presence of this tumour-suppressing gene. Unfortunately, certain cancer cells escape from this control by blocking this 'dependence receptor' mechanism. That is how we know that the DCC gene is extinguished in most human cancers,' explains Patrick Mehlen.

In the near future, this research work could lead to a new targeted treatment that aims to reactivate the death of the cancer cells to destroy breast cancer, lung cancer, etc. 'Our group has developed several candidate drugs that reactivate the cell death induced by the DCC receptor in animal models, and we hope to be able to carry out human clinical testing of these candidate drugs in three years' time,' concludes Patrick Mehlen.

Patrick Mehlen's work will be supported via the Liliane Bettencourt Schueller Life Sciences Prize, which he has just won. The prize will be awarded on 15th December 2011. To visit the Foundation's website: http://www.fondationbs.org/

Sources

DCC constrains tumour progression via its dependence receptor activity Marie Castets1, Laura Broutier1, Yann Molin1, Marie Brevet2, Guillaume Chazot1, Nicolas Gadot2, Armelle Paquet2, Laetitia Mazelin1, Loraine Jarrosson-Wuilleme1, Jean-Yves Scoazec2, AgnesBernet1 & Patrick Mehlen1

1 Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France.

2 Endocrine Differentiation Laboratory, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Hospices Civils de Lyon, Hôpital Edouard Herriot, Anatomie Pathologique, 69437 Lyon, France.

Nature, 11 décembre 2011doi:10.1038/nature10708

Inserm Presse | EurekAlert!
Further information:
http://www.inserm.fr

Further reports about: Cancer Cancérologie DCC Inserm cancer cells cell death

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>