Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gene that protects against colorectal cancers

15.12.2011
The research team at Lyon has developed an animal model carrying a mutation of the DCC gene. Mice carrying the mutation develop tumours, because this gene can no longer induce the death of the cancer cells. This discovery could lead to the development of a new targeted cancer treatment that aims to reactivate the dying of cancer cells.

The results of this study have been published as a Letter in the 11th December 2011 issue of the journal Nature.

The team led by Patrick Mehlen, Director of the DEVweCAN 'Laboratory of Excellence' at the Lyon Cancer Research Centre (CNRS/Inserm/Centre Léon Bérard/Université Claude Bernard 1), studies the cell death process (apoptosis) and, in particular, the mechanism that makes the cells understand that they should initiate a self-destruction process when they become abnormal. Patrick Mehlen's team suggested that this mechanism could operate via sentinels located on the surface of cells, which examine their environment. The scientists named these sentinels 'dependence receptors'.

The research team focused on this concept of 'dependence receptors'. When a cell receptor is associated with its ligand, the classic message indicates 'all is well', and leads to cell survival. On the other hand, when the receptor is deprived of its ligand, it can send a message leading to cell death. This mechanism is also called 'apoptosis.' When this is applied to cancer research, the absence of ligands could cause the death of cancer cells that proliferate in an anarchic manner.

In this study, Patrick Mehlen's team shows that the DCC gene (Deleted Colorectal Cancer), which codes for a 'dependence receptor', protects the organism from the onset of cancer by causing the death of cells that become cancerous. The researchers used a mouse model where the DCC gene has been genetically modified. The mutation of this dependence receptor prevents the induction of apoptosis. When the DCC gene is eliminated by mutation, the mouse spontaneously develops colon cancer.

'The organism is naturally protected from the development of cancers thanks to the presence of this tumour-suppressing gene. Unfortunately, certain cancer cells escape from this control by blocking this 'dependence receptor' mechanism. That is how we know that the DCC gene is extinguished in most human cancers,' explains Patrick Mehlen.

In the near future, this research work could lead to a new targeted treatment that aims to reactivate the death of the cancer cells to destroy breast cancer, lung cancer, etc. 'Our group has developed several candidate drugs that reactivate the cell death induced by the DCC receptor in animal models, and we hope to be able to carry out human clinical testing of these candidate drugs in three years' time,' concludes Patrick Mehlen.

Patrick Mehlen's work will be supported via the Liliane Bettencourt Schueller Life Sciences Prize, which he has just won. The prize will be awarded on 15th December 2011. To visit the Foundation's website: http://www.fondationbs.org/

Sources

DCC constrains tumour progression via its dependence receptor activity Marie Castets1, Laura Broutier1, Yann Molin1, Marie Brevet2, Guillaume Chazot1, Nicolas Gadot2, Armelle Paquet2, Laetitia Mazelin1, Loraine Jarrosson-Wuilleme1, Jean-Yves Scoazec2, AgnesBernet1 & Patrick Mehlen1

1 Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France.

2 Endocrine Differentiation Laboratory, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Hospices Civils de Lyon, Hôpital Edouard Herriot, Anatomie Pathologique, 69437 Lyon, France.

Nature, 11 décembre 2011doi:10.1038/nature10708

Inserm Presse | EurekAlert!
Further information:
http://www.inserm.fr

Further reports about: Cancer Cancérologie DCC Inserm cancer cells cell death

More articles from Life Sciences:

nachricht Surprisingly many peculiar long introns found in brain genes
10.07.2020 | Moscow Institute of Physics and Technology

nachricht Did nerve cells evolve to talk to microbes?
10.07.2020 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

Goodbye Absorbers: High-Precision Laser Welding of Plastics

10.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>