Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gene that protects against colorectal cancers

15.12.2011
The research team at Lyon has developed an animal model carrying a mutation of the DCC gene. Mice carrying the mutation develop tumours, because this gene can no longer induce the death of the cancer cells. This discovery could lead to the development of a new targeted cancer treatment that aims to reactivate the dying of cancer cells.

The results of this study have been published as a Letter in the 11th December 2011 issue of the journal Nature.

The team led by Patrick Mehlen, Director of the DEVweCAN 'Laboratory of Excellence' at the Lyon Cancer Research Centre (CNRS/Inserm/Centre Léon Bérard/Université Claude Bernard 1), studies the cell death process (apoptosis) and, in particular, the mechanism that makes the cells understand that they should initiate a self-destruction process when they become abnormal. Patrick Mehlen's team suggested that this mechanism could operate via sentinels located on the surface of cells, which examine their environment. The scientists named these sentinels 'dependence receptors'.

The research team focused on this concept of 'dependence receptors'. When a cell receptor is associated with its ligand, the classic message indicates 'all is well', and leads to cell survival. On the other hand, when the receptor is deprived of its ligand, it can send a message leading to cell death. This mechanism is also called 'apoptosis.' When this is applied to cancer research, the absence of ligands could cause the death of cancer cells that proliferate in an anarchic manner.

In this study, Patrick Mehlen's team shows that the DCC gene (Deleted Colorectal Cancer), which codes for a 'dependence receptor', protects the organism from the onset of cancer by causing the death of cells that become cancerous. The researchers used a mouse model where the DCC gene has been genetically modified. The mutation of this dependence receptor prevents the induction of apoptosis. When the DCC gene is eliminated by mutation, the mouse spontaneously develops colon cancer.

'The organism is naturally protected from the development of cancers thanks to the presence of this tumour-suppressing gene. Unfortunately, certain cancer cells escape from this control by blocking this 'dependence receptor' mechanism. That is how we know that the DCC gene is extinguished in most human cancers,' explains Patrick Mehlen.

In the near future, this research work could lead to a new targeted treatment that aims to reactivate the death of the cancer cells to destroy breast cancer, lung cancer, etc. 'Our group has developed several candidate drugs that reactivate the cell death induced by the DCC receptor in animal models, and we hope to be able to carry out human clinical testing of these candidate drugs in three years' time,' concludes Patrick Mehlen.

Patrick Mehlen's work will be supported via the Liliane Bettencourt Schueller Life Sciences Prize, which he has just won. The prize will be awarded on 15th December 2011. To visit the Foundation's website: http://www.fondationbs.org/

Sources

DCC constrains tumour progression via its dependence receptor activity Marie Castets1, Laura Broutier1, Yann Molin1, Marie Brevet2, Guillaume Chazot1, Nicolas Gadot2, Armelle Paquet2, Laetitia Mazelin1, Loraine Jarrosson-Wuilleme1, Jean-Yves Scoazec2, AgnesBernet1 & Patrick Mehlen1

1 Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France.

2 Endocrine Differentiation Laboratory, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Hospices Civils de Lyon, Hôpital Edouard Herriot, Anatomie Pathologique, 69437 Lyon, France.

Nature, 11 décembre 2011doi:10.1038/nature10708

Inserm Presse | EurekAlert!
Further information:
http://www.inserm.fr

Further reports about: Cancer Cancérologie DCC Inserm cancer cells cell death

More articles from Life Sciences:

nachricht Channels for the Supply of Energy
19.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Vine Compound Starves Cancer Cells
19.11.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How Humans and Machines Navigate Complex Situations

19.11.2018 | Science Education

Finding plastic litter from afar

19.11.2018 | Ecology, The Environment and Conservation

Channels for the Supply of Energy

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>