Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gene for brain size - only found in humans

27.02.2015

Following the traces of evolution: Max Planck Researchers find a key to the reproduction of brain stem cells

About 99 percent of human genes are shared with chimpanzees. Only the small remainder sets us apart. However, we have one important difference: The brain of humans is three times as big as the chimpanzee brain. During evolution our genome must have changed in order to trigger such brain growth. Wieland Huttner, Director and Research Group Leader a the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), and his team identified for the first time a gene that is only present in humans and contributes to the reproduction of basal brain stem cells, triggering a folding of the neocortex.


This picture shows a cerebral cortex of an embryonic mouse. The cell nuclei are marked in blue and the deep-layer neurons in red. The human-specific gene ARHGAP11B was selectively expressed in the right half of the brain, which is visible by the folding of the neocortical surface.

© MPI f. Molecular Cell Biology and Genetics

The researchers isolated different subpopulations of human brain stem cells and precisely identified, which genes are active in which cell type. In doing so, they noticed the gene ARHGAP11B: it is only found in humans and in our closest relatives, the Neanderthals and Denisova-Humans, but not in chimpanzees. This gene manages to trigger brain stem cells to form a bigger pool of stem cells. In that way, during brain development more neurons can arise and the cerebrum can expand. The cerebrum is responsible for cognitive functions like speaking and thinking.

Wieland Huttner’s researchers developed a method that isolates and identifies special subpopulations of brain stem cells from the developing human cerebrum. No one has managed to do this so far. The scientists first isolated different stem and progenitor cell types from fetal mice and human cerebrum tissue. In contrast to the big and folded human brain, the brain of mice is small and smooth.

After the isolation, the researchers compared the genes that are active in the various cell types and were able to identify 56 genes that are only present in humans and which play a role in brain development. “We noticed that the gene ARHGAP11B is especially active in basal brain stem cells. These cells are really important for the expansion of the neocortex during evolution,” says Marta Florio, PhD student in Wieland Huttner’s lab, who carried out the main part of the study.

The human-specific gene also works in mice

In the further course of the study, the researchers focused on the function of this special gene. The researchers suspected that if it was responsible for a bigger pool of brain stem cells in humans and thereby for an expanded cerebrum, then this human-specific gene should trigger a similar development in the smaller brain of a mouse. They introduced the gene into mice embryos and indeed: Under the influence of the human-specific gene, the mice produced significantly more brain stem cells and in half of all cases even a folding of the neocortex, which is typical for human brains. All these results suggest that the gene ARHGAP11B plays a key role in the evolutionary expansion of the human neocortex.

Data from researchers working with Svante Pääbo from the Max Planck Institute for Evolutionary Anthropology in Leipzig confirm that ARHGAP11B not only occurs in the human genome, but also existed in the Neanderthals and Denisova-Humans. Neanderthals had a similar big brain to humans. “ARHGAP11B is the first human-specific gene where we could show that it contributes to the pool of basal brain stem cells and can trigger a folding of the neocortex. In that way, we managed to take the next step in tracing evolution”, summarizes Wieland Huttner.

His research group has been interested in the secrets of human brain evolution for a long time. In the last years, his researchers made several discoveries that contributed to the understanding of how a big brain could develop during evolution. In the year 2010 for example, the researchers identified a new type of stem cell in the outer growth zones of the brain. The current project of Wieland Huttner and his team was performed together with Andreas Dahl from the DFG Research Center for Regenerative Therapies Dresden and Robert Lachmann from the University Hospital Carl Gustav Carus of the Dresden University of Technology.


Contact

Prof. Dr. Wieland B. Huttner
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden
Phone: +49 351 210-1500
Fax: +49 351 210-1600
Email: huttner@mpi-cbg.de
 
Katrin Boes
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden
Phone: +49 351 210-2080
Email: boes@mpi-cbg.de


Original publication
Marta Florio, Mareike Albert, Elena Taverna, Takashi Namba, Holger Brandl, Eric Lewitus, Christiane Haffner, Alex Sykes, Fong Kuan Wong, Jula Peters, Elaine Guhr, Sylvia Klemroth, Kay Prüfer, Janet Kelso, Ronald Naumann, Ina Nüsslein, Andreas Dahl, Robert Lachmann, Svante Pääbo, Wieland B. Huttner

Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion

Science (2015), February 26, 2015

Prof. Dr. Wieland B. Huttner | Max Planck Institute of Molecular Cell Biology and Genetics, Dresden

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>