Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A one way gate for tau proteins

27.10.2011
Scientists from Bonn have discovered a possible mechanism of Alzheimer disease

For a nerve cell to function properly, each protein must be in the right place.

The tau protein, for example, has to be located in the axons - the long projections of nerve cells. An early sign of a number of neurodegenerative diseases, in particular Alzheimer disease, is the redistribution of tau from the axons to the cell body.

Scientists at the German Center for Neurodegenerative Diseases (DZNE) and the research center caesar, lead by Prof. Eckhard Mandelkow, have now found an explanation for this mislocalization. They have discovered a new cellular mechanism that keeps tau protein in the axons in healthy cells and show how this process malfunctions in certain diseases. "The mechanism functions like a one-way gate at the axon junction, through which tau may enter the axon but which would prevent its return to the cell body" said Mandelkow. "In Alzheimer disease and other so-called tauopathies, tau is altered so that it can pass through the gate in both directions and thus becomes mislocalized." The work was published on October 18, 2011 online in the EMBO Journal.

"Tauopathies" is an umbrella term for a number of neurodegenerative diseases, of which Alzheimer disease is the most prominent representative. In normal cells, tau is enriched in the axons – cellular processes through which neuronal signals are passed on to downstream cells. In tauopathies, however, the protein is distributed throughout the cell body and its dendrites, the recipients of neural signals. This mislocalization of tau is a first and very crucial step in the pathology of the diseases. In previous work the teams of Eva and Eckhard Mandelkow have found evidence that the accumulation of tau in dendrites interferes with the neuronal contacts and thereby affects signal transmission between nerve cells. In the long term, this leads to the degeneration and loss of cells. The researchers thus wanted to investigate how tau is maintained in the axon in healthy cells and why this process is impaired in tauopathies.

To explore this issue in more detail, the scientists used a new technology that allows tracking the distribution of proteins within a cell. To this end, they coupled the tau protein with a photoactivated fluorescent dye and introduced it into neuronal cells. When a certain area of the cell is then stimulated briefly with a laser, the fluorescence properties of the tau protein change from green to red, so that its further spreading within the cell can be observed. The researchers showed that tau, once in the normal axon, is virtually trapped there. At the axon initial segment, where the axon branches off from the cell body, the scientists discovered a barrier that prevents tau protein from moving back from the axon into the cell body.

In healthy cells, tau binds to and stabilizes microtubules, components of the cytoskeleton, in the axons of the cells. In Alzheimer disease and other tauopathies, tau is covered with too many phosphate groups. This excessive phosphorylation causes removal of tau from the cytoskeleton and aggregation.

Could this process also contribute to the mislocalization of tau to the cell body? Could it be that the barrier at the initial axonal segment is only effective when tau is firmly bound to microtubules? Through further experiments the researchers were able to unambiguously answer these questions with "yes" - tau that is highly phosphorylated is able to leave the axon and accumulate in the cell body. "It has been recognized for a long time that tau protein is mislocalized in tauopathies. Moreover, the fact that tau bears too many phosphate groups in these diseases is common knowledge. Our studies now show that there is a connection between the two processes. Tau is sorted incorrectly because it is excessively phosphorylated, "said Mandelkow. Further studies are underway to evaluate the cause of this underlying hyperphosphorylation.

Original publication:
Xiaoyu Li, Yatender Kumar, Hans Zempel, Eva-Maria Mandelkow, Jacek Biernat and Eckhard Mandelkow. Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. The EMBO Journal, advanced online publication: 18.10.2011
Contact information:
Dr. Katrin Weigmann
German Center for Neurodegenerative Diseases (DZNE)
Press and Public Relations
Phone: +49 228 43302 /263
Mobile: +49 173 – 5471350
Email: katrin.weigmann@dzne.de

Katrin Weigmann | idw
Further information:
http://www.dzne.de

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>