Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A one way gate for tau proteins

27.10.2011
Scientists from Bonn have discovered a possible mechanism of Alzheimer disease

For a nerve cell to function properly, each protein must be in the right place.

The tau protein, for example, has to be located in the axons - the long projections of nerve cells. An early sign of a number of neurodegenerative diseases, in particular Alzheimer disease, is the redistribution of tau from the axons to the cell body.

Scientists at the German Center for Neurodegenerative Diseases (DZNE) and the research center caesar, lead by Prof. Eckhard Mandelkow, have now found an explanation for this mislocalization. They have discovered a new cellular mechanism that keeps tau protein in the axons in healthy cells and show how this process malfunctions in certain diseases. "The mechanism functions like a one-way gate at the axon junction, through which tau may enter the axon but which would prevent its return to the cell body" said Mandelkow. "In Alzheimer disease and other so-called tauopathies, tau is altered so that it can pass through the gate in both directions and thus becomes mislocalized." The work was published on October 18, 2011 online in the EMBO Journal.

"Tauopathies" is an umbrella term for a number of neurodegenerative diseases, of which Alzheimer disease is the most prominent representative. In normal cells, tau is enriched in the axons – cellular processes through which neuronal signals are passed on to downstream cells. In tauopathies, however, the protein is distributed throughout the cell body and its dendrites, the recipients of neural signals. This mislocalization of tau is a first and very crucial step in the pathology of the diseases. In previous work the teams of Eva and Eckhard Mandelkow have found evidence that the accumulation of tau in dendrites interferes with the neuronal contacts and thereby affects signal transmission between nerve cells. In the long term, this leads to the degeneration and loss of cells. The researchers thus wanted to investigate how tau is maintained in the axon in healthy cells and why this process is impaired in tauopathies.

To explore this issue in more detail, the scientists used a new technology that allows tracking the distribution of proteins within a cell. To this end, they coupled the tau protein with a photoactivated fluorescent dye and introduced it into neuronal cells. When a certain area of the cell is then stimulated briefly with a laser, the fluorescence properties of the tau protein change from green to red, so that its further spreading within the cell can be observed. The researchers showed that tau, once in the normal axon, is virtually trapped there. At the axon initial segment, where the axon branches off from the cell body, the scientists discovered a barrier that prevents tau protein from moving back from the axon into the cell body.

In healthy cells, tau binds to and stabilizes microtubules, components of the cytoskeleton, in the axons of the cells. In Alzheimer disease and other tauopathies, tau is covered with too many phosphate groups. This excessive phosphorylation causes removal of tau from the cytoskeleton and aggregation.

Could this process also contribute to the mislocalization of tau to the cell body? Could it be that the barrier at the initial axonal segment is only effective when tau is firmly bound to microtubules? Through further experiments the researchers were able to unambiguously answer these questions with "yes" - tau that is highly phosphorylated is able to leave the axon and accumulate in the cell body. "It has been recognized for a long time that tau protein is mislocalized in tauopathies. Moreover, the fact that tau bears too many phosphate groups in these diseases is common knowledge. Our studies now show that there is a connection between the two processes. Tau is sorted incorrectly because it is excessively phosphorylated, "said Mandelkow. Further studies are underway to evaluate the cause of this underlying hyperphosphorylation.

Original publication:
Xiaoyu Li, Yatender Kumar, Hans Zempel, Eva-Maria Mandelkow, Jacek Biernat and Eckhard Mandelkow. Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. The EMBO Journal, advanced online publication: 18.10.2011
Contact information:
Dr. Katrin Weigmann
German Center for Neurodegenerative Diseases (DZNE)
Press and Public Relations
Phone: +49 228 43302 /263
Mobile: +49 173 – 5471350
Email: katrin.weigmann@dzne.de

Katrin Weigmann | idw
Further information:
http://www.dzne.de

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>