Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A foot in the door to genetic information

07.03.2012
In the cell nucleus, DNA wraps around what are called histone proteins, forming regularly spaced spherical bodies called nucleosomes.

Thus, large portions of the genetic material are inaccessible to the gene reading machinery. Scientists at the German Cancer Research Center have now simulated at high time resolution how short DNA segments repeatedly detach spontaneously from the nucleosome. The group has been the first to demonstrate that the spool-shaped histone proteins have an active role in opening access to the genetic information.

Histones are evolutionary highly conserved proteins which are much the same in man, mouse or threadworm. They serve as coils around which the DNA molecule, a thread of several feet, wraps in the cell nucleus. Up until recent years, histones were believed to be little more than DNA packaging material. However, by now it is known that they also determine which genes are read and which are not read; thus, they actively participate in regulating many cell functions.

At DKFZ, Professor Dr. Jörg Langowski is studying the interactions of DNA and its "packaging" at a molecular level. "For DNA to be read it must be at least temporarily accessible. We wanted to find out how and, more importantly, for how long histones and DNA thread disassociate from their tightly wrapped state. This gives us a better understanding of how DNA is read and how this mechanism may possibly be disrupted in cancer cells," says Langowski, outlining the goal of his recently published research.

The packaging of DNA in the cell nucleus is extremely well studied: Each DNA spool consists of two molecules each of four different histone proteins. In each nucleosome, a DNA thread of 146 base pairs wraps around this spherical histone complex exactly 1.75 times. A small stretch of unwrapped DNA of variable length is followed by the next histone spool, forming a structure that looks like beads on a string. Prior studies have suggested that there must be a balance of "wrapped" and unwrapped DNA in the cell nucleus.

Langowski and his coworkers have now been able to resolve these interactions at a highly precise timescale using a novel computer simulation. The researchers observed two different spontaneously occurring open states of which the longer-lived one lasts one hundred thousandth of a second, while the shorter-lived one, during which exactly nine DNA building blocks dissociate from the nucleosome, lasts no more than a few millionths of a second. The group discovered that in both cases the free end of the H3 histone actively moves between protein core and DNA, thus detaching short DNA segments. The investigators assume that once the DNA segments are released from the protein binding, more segments of the DNA thread can be unwrapped more easily.

An interesting observation in this context is that the cell attaches a multitude of chemical, or what is called epigenetic, tags to exactly this free end of the H3 histone. These tags – which are often altered in tumor cells – have an influence on which genes are read and which are not. "Our observations now also confirm at an atomic level that the H3 tail plays a key role in determining when DNA is accessible and genes can be read and when this is not the case. It is what you could call a foot in the door to access the genetic information," said Langowski interpreting his results.

Karine Voltz, Joanna Trylska, Nicolas Calimet, Jeremy C. Smith and Jörg Langowski: Unwrapping of Nucleosomal DNA Ends: A Multiscale Molecular Dynamics Study. Biophysical Journal 2012, DOI:10.1016/j.bpj.2011.11.4028

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 2,500 employees is the largest biomedical research institute in Germany. At DKFZ, more than 1,000 scientists investigate how cancer develops, identify cancer risk factors and endeavor to find new strategies to prevent people from getting cancer. They develop novel approaches to make tumor diagnosis more precise and treatment of cancer patients more successful.

Jointly with Heidelberg University Hospital, DKFZ has established the National Center for Tumor Diseases (NCT) Heidelberg where promising approaches from cancer research are translated into the clinic. The staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The center is a member of the Helmholtz Association of National Research Centers. Ninety percent of its funding comes from the German Federal Ministry of Education and Research and the remaining ten percent from the State of Baden-Württemberg.

Dr. Sibylle Kohlstaedt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>