Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A double ring ceremony prepares telomerase RNA to wed its protein partner

26.03.2012
Few molecules are more interesting than DNA—except of course RNA. After two decades of research, that "other macromolecule" is no longer considered a mere messenger between glamorous DNA and protein-synthesizing machines. We now know that RNA has been leading a secret life, regulating gene expression and partnering with proteins to form catalytic ribonucleoprotein (RNP) complexes.

One of those RNPs is telomerase, an enzyme that maintains chromosome integrity. In the March 25, 2012, advance online edition of Nature, researchers at the Stowers Institute for Medical Research report how the RNA TER1, a component of telomerase, is sculpted to favor interaction with its protein partner. Two ring-like proteins sequentially slip onto unprocessed TER1 RNA and hold it while it is clipped to the optimum size, folded, and capped.

That processing is essential: without it TER1 could not engage its protein partner to form the active telomerase RNP. The finding not only deepens our understanding of RNA biochemistry but also suggests novel pharmaceutical approaches to cancer and diseases of aging.

"Cancer cells are exquisitely dependent on telomerase," says Stowers associate investigator and Howard Hughes Medical Institute Early Career Scientist Peter Baumann, Ph.D., the study's senior author. "Drugs inhibiting telomerase could be a new class of cancer chemotherapeutics with far fewer side effects than drugs in use." Currently, biotechnology and pharmaceutical companies are actively seeking clinically useful telomerase inhibitors.

Most RNA strands—including the intermediary or "messenger" RNAs—undergo splicing, analogous to editing a film. The universal snipper is a humongous complex called the spliceosome, which usually touches down on an RNA strand, makes two cuts, and then pastes the new ends together. But in a 2008 Nature study, the Baumann group reported a surprising finding. "We showed that the spliceosome acts to process TER1," he says. "But instead of cutting twice and pasting, it made a single cut and stopped."

To determine what restrained the spliceosome from making a second cut, Baumann's group analyzed TER1 RNA in the yeast Schizosaccharomyces pombe. They found that two protein complexes called Sm and Lsm latched onto TER1 RNA in a mutually exclusive fashion as the RNA matures. Interestingly, Lsm-bound TER1 RNA showed the most efficient telomerase activity, hinting that the Sm ring slips on first.

For further analysis they enlisted the aid of Stowers' assistant investigator Marco Blanchette, Ph.D., an RNA splicing expert. The team confirmed that indeed Sm bound immature TER1 RNA, prompting the incoming spliceosome to snip off everything to its "right". Once that cut was made, Sm appeared to promote formation of a protective tri-methylated "cap" on the "left" end of the TER1 transcript, thus stabilizing it. At that point the Sm ring slipped off and was replaced by Lsm, facilitating recruitment of TER1's catalytic protein partner.

This work shows that the marriage of RNA and protein telomerase partners requires a two-step ritual attended first by Sm and then by Lsm proteins. The presence of Lsm in preparations of the active enzyme also suggests that it lingers after the ceremony to protect mature Ter1 RNA from RNA-damaging enzymes.

Determining what the evolutionarily conserved Sm and Lsm proteins do is a significant contribution to RNA biology, says Wen Tang, a graduate student in the Baumann lab who led the study. "People discovered these proteins 20 years ago and knew they were essential for RNA processing," says Tang. "Right now we don't know whether Sm and Lsm participate in processing of telomerase in human cells. Other members of the lab are looking into that."

Understanding how telomerase works in human cells is vital because of its connection to seemingly unrelated diseases. Not only because cancer cells depend on its activity, but in a fascinating "converse", mutations that inactivate telomerase are seen in a degenerative condition called dyskeratosis congenital (DKC), in which patients show signs of premature aging in some organs.

"People have looked for mutations in telomerase components in individuals with DKC and found them in only about half of those patients," says Wen Tang. "This work identifies novel telomerase components that likely affect normal enzyme function." Those components could provide novel targets potentially useful to diagnose or treat DKC.

Baumann agrees that knowing how to tinker with TER1 biogenesis has therapeutic potential in several contexts. But he is equally happy that the new work adds to scientists' appreciation of RNA complexity. "This paper fills in the blanks between transcription of the TER1 RNA subunit and formation of an active telomerase complex," he says. "We also hope it provides a more complete picture of TER1 biogenesis in future textbooks."

Ram Kannan of the Baumann lab also contributed to the paper.

The work was supported in part by the Howard Hughes Medical Institute and the American Heart Association.

About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife Virginia opened the Institute in 2000. Since then, the Institute has spent over 800 million dollars in pursuit of its mission.

Currently the Institute is home to over 500 researchers and support personnel; over 20 independent research programs; and more than a dozen technology development and core facilities.

Gina Kirchweger | EurekAlert!
Further information:
http://www.stowers.org

More articles from Life Sciences:

nachricht Molecular motors run in unison in a metal-organic framework
20.03.2019 | University of Groningen

nachricht Active substance from plant slows down aggressive eye cancer
20.03.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>