How a Common Fungus Knows When to Attack

The fungus, known for causing yeast and other minor infections, also causes a sometimes-fatal infection known as candidemia in immunocompromised patients. An in vivo study, published in mBio, demonstrates how C. albicans can distinguish between a healthy and an unhealthy host and alter its physiology to attack.

“The ability of the fungus to sense the immune status of its host may be key to its ability to colonize harmlessly in some people but become a deadly pathogen in others,” said Jessica V. Pierce, BA, PhD student in the molecular microbiology program at the Sackler School of Graduate Biomedical Sciences at Tufts.

“Effective detection and treatment of disease in immunocompromised patients could potentially work by targeting the levels of a protein, Efg1p, that we found influenced the growth of Candida albicans inside the host,” she continued.

The researchers knew from previous research that Efg1p influences the expression of genes that regulate how harmful a fungal cell can become. Surprisingly, the investigators found that lower Efg1p levels allow the fungal cells to grow to high levels inside a host. Higher levels of the protein result in less growth.

To examine how the immune status could affect the growth of C. albicans within a host, the researchers fed both healthy and immunocompromised mice equal amounts of two fungal strains containing two different levels of the Efg1p protein.

Fecal pellets from the mice were tested to determine which strain of fungi thrived. In a healthy host, the fungal cells with higher levels of the protein predominated.

In immunocompromised mice, the fungal cells with lower levels of the protein flourished. The researchers noted that lack of interactions with immune cells in the intestinal tract most likely caused the necessary environmental conditions favoring fungal cells that express lower levels of the protein, resulting in fungal overgrowth and setting the stage for systemic infection.

“By having a mixed population with some high Efg1p cells and some low Efg1p cells, the fungus can adjust its physiology to remain benign or become harmful when it colonizes hosts with varying immune statuses. These findings are important because they provide the first steps toward developing more effective methods for detecting and treating serious and stubborn infections caused by Candida albicans, such as candidemia,” said Carol A. Kumamoto, PhD, professor of molecular biology and microbiology at Tufts University School of Medicine and member of the molecular microbiology and genetics program faculties at the Sackler School of Graduate Biomedical Sciences.

The immune system and “good bacteria” within the body act to regulate the size of C. albicans fungal populations in healthy individuals. When the immune system is compromised, the fungus can spread throughout the body. Candidemia, i.e. blood-borne Candida, is the fourth most common blood infection among hospitalized patients in the United States and is found in immunocompromised patients such as babies, those with catheters, and the critically ill.

mBio is an online-only, open access journal published in association with the American Society for Microbiology.

This research was supported in part by grants #AI076156, #AI08179, and #AI07422 from the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health.

Pierce JV, Kumamoto CA. mBio. “Variation in Candida albicans EFG1 Expression Enables Host-Dependent Changes in Colonizing Fungal Populations.” July 24, 2012. DOI:10.1128/mBio.00117-12.

About Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, biomedical sciences, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. Tufts University School of Medicine and the Sackler School undertake research that is consistently rated among the highest in the nation for its effect on the advancement of medical science.

If you are a member of the media interested in learning more about this topic, or speaking with a faculty member at the Tufts University School of Medicine or another Tufts health sciences researcher, please contact Jennifer Kritz at 617-636-3707.

Media Contact

Jennifer Kritz EurekAlert!

More Information:

http://www.tufts.edu/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A new look at the consequences of light pollution

GAME 2024 begins its experiments in eight countries. Can artificial light at night harm marine algae and impair their important functions for coastal ecosystems? This year’s project of the training…

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

Partners & Sponsors