Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Code for evolutionary biology

17.11.2010
Alexandros (Alexis) Stamatakis heads the new research group “Scientific Computing” at the Heidelberg Institute for Theoretical Studies (HITS) – Software and supercomputing for large-scale biological data analysis.

His own roots are international: born in Saarbrücken, Alexis Stamatakis was raised by a German mother and a Greek father and received his “Abitur” at the German school in Athens. As a computer scientist, one of his research interests is the evolutionary history of plants, which is quite unusual.

But his motivation for that interest is data-driven: He is fascinated by analyzing large trees, because of the associated grand computational challenges that entail problems from theoretical computer science as well as from parallel computing. “Evolutionary biologists are currently generating a molecular data avalanche that is even hard to analyze on the most powerful supercomputers“, says the 34 year old scientist. “The challenge for computer science is to develop programs and methods for calculating evolutionary trees and to discover knowledge in the mass of molecular data.”

As head of the new research group “Scientific Computing” (SCO) at HITS, Alexis and his students develop methods and tools to reconstruct and post-process evolutionary (phylogenetic) trees. He also works on designing dedicated computer architectures for reconstructing phylogenies. Moreover, he is responsible for the new parallel (super-) computer system that is currently being installed at HITS and shares his expert knowledge in parallel computer architectures and parallel programming with the other five HITS research groups. At present, ten scientists and system administrators form part of SCO. In 2011 additional PhD students, PostDocs, and visiting scientists will join the group to establish a strong research program in computational molecular evolution.

“Alexis is a young, ambitious scientist who stands for the goals and philosophy of HITS. Computational methods help us to cope with the current data flood in the life sciences and to extract new knowledge from this data” says the founder of HITS, Klaus Tschira.

Alexis studied computer sciences at Munich, Lyon (École Normale Supérieure), Paris, and Madrid. In 2004 he received his PhD from the Technical University of Munich. In 2007 and 2008 he declined positions as assistant professor in the US. He worked as a postdoctoral fellow in Crete and the Swiss Federal Institute of Technology at Lausanne. In 2008 Stamatakis returned to Munich where he worked at the LMU and the TU Munich as head of a junior research group under the auspices of the Emmy-Noether program of the German Science Foundation (DFG).

His primary research objective is to develop tools for reconstructing the evolution of all living beings for which molecular (genetic) data is available, with the still distant goal to reconstruct the tree of life. Most tree reconstruction methods/algorithms face a fundamental problem which computer scientists term NP-hard (non deterministic polynomial time hard). Assume trying to reconstruct the evolutionary history based on the DNA data of fifty organisms using a scoring function (optimality criterion) that tells us how well the data fits a specific evolutionary tree (an evolutionary hypothesis).

NP-hardness means that it is impossible to score all possible trees in order to find the best one, because there are simply too many trees. “Even using all the computing power in the world, we would have to wait too long to find the optimal tree”, Alexis explains. “However, recently published phylogenetic trees don’t comprise only fifty but several thousands of organisms.”

Alexis developed the program RAxML, which allows for reconstructing huge trees, of up to 120,000 organisms. By now, his software is one of the most popular applications for phylogenetic analysis and a paper describing RAxML ranks among the most frequently cited publications in computer science that were published in the last 5 years. “RAxML is publicly available as open source code. Thereby, we provide a tool that biologists around the world can use entirely free of charge to analyze their data.“ This year, RAxML was also integrated into the SPEC-Benchmark suite for parallel computing. The programs in the SPEC benchmark suite are deployed to assess the performance of supercomputer systems.

Alexis is part of the iPlant collaborative project that was initiated by the American National Science Foundation (NSF). iPlant aims to develop and make available new computational methods and cyberinfrastructure solutions to address an evolving array of grand challenges in the plant sciences. Alexandros Stamatakis is the only involved European scientist. The German Science Foundation (DFG) is funding him in conjunction with iPlant. Alexis also is the first computer scientist to be elected as member of the council of the „Society of Systematic Biologists“.

Alexis will continue collaborations with several institutions such as the Dunn Lab at Brown University, Rhode Island/USA. Two of His PhD students benefit from an exchange programme with Imperial College London that is funded by the German Academic Exchange Service (DAAD). In cooperation with researchers from the European Molecular Biology Laboratory (EMBL), the European Bioinformatics Institute (EBI), and the University College London, Alexis will organize the 3rd workshop on „Computational Molecular Evolution“. It will take place from April 10-21, 2011 at Hinxton, near Cambridge/UK. This workshop introduces Biologists to the usage and underlying theory of computational tools for evolutionary data analysis.

Further information, printable pictures and press contact:
Dr. Peter Saueressig
Public Relations
HITS Heidelberg Institute for Theoretical Studies
Tel: +49-6221-533-245
Fax: +49-6221-533-198
peter.saueressig@h-its.org
www.h-its.org
Scientific contact:
Dr. Alexandros Stamatakis
HITS Heidelberg Institute for Theoretical Studies
Tel: +49-6221-533-240
Fax: +49-6221-533-298
alexandros.stamatakis@h-its.org
www.h-its.org
HITS (Heidelberg Institute for Theoretical Studies) is a private, non-for-profit research institute. It was established in 2010 as a successor to the EML Research gGmbH. It gets its base funding from the Klaus Tschira Foundation, which was established in 1995. HITS gGmbH is jointly managed by Dr. h.c. Klaus Tschira and Prof. Dr.-Ing. Andreas Reuter.

Dr. Peter Saueressig | idw
Further information:
http://www.h-its.org
http://www.h-its.org/english/research/sco/index.php

More articles from Life Sciences:

nachricht Princeton researchers explore how a carbon-fixing organelle forms via phase separation
13.09.2019 | Princeton University

nachricht The working of a molecular string phone
13.09.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Low sea-ice cover in the Arctic

13.09.2019 | Earth Sciences

Researchers produce synthetic Hall Effect to achieve one-way radio transmission

13.09.2019 | Power and Electrical Engineering

Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly

13.09.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>