Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new, clinically validated diagnostic test for detecting BRCA1 and BRCA2 mutations

08.10.2013
Technology as sensitive as standard methodology but more efficient, say researchers in the Journal of Molecular Diagnostics

The recognition of a causal link between mutations in BRCA1 and BRCA2 genes and increased risk of developing breast and ovarian cancer has intensified the demand for genetic testing. Identifying mutations in these large genes by conventional methods can be time consuming and costly.

A report in the November issue of the Journal of Molecular Diagnostics describes a new technique using second-generation sequencing technology that is as sensitive as the standard methodology but has the potential to improve the efficiency and productivity of genetic testing laboratories.

"In our laboratory, approximately 25% of high risk patients who undergo BRCA1 or BRCA2 testing will generate a result with a real or ambiguous relationship to hereditary cancer risk, and so testing for these mutations is an important tool to identify individuals who would benefit from preventative surgery or increased breast cancer surveillance," says lead investigator Aly Karsan, MD, of the Genome Sciences Centre and Department of Pathology of the BC Cancer Agency.

Dr. Karsan, who says his institution currently receives over 500 requests annually for such genetic testing, expects demand to rise and wait times to increase as public awareness broadens, especially following such high-profile patients as Angelina Jolie. Fueling the demand will be identification of additional suspect genes and discovery of genetic factors predictive of response to new therapies. As a result, there is a need for faster and low-cost testing with additional analytic capabilities.

Increased efficiency of the methodology developed offers additional benefits to patients. The investigators envision that more women will be able to be tested, including those without family history of breast or ovarian cancer. Another potential advantage will be that more genomic regions can be analyzed by a single test, allowing simultaneous analysis of other genes that also may be contributing to breast or ovarian cancer susceptibility.

The investigators warn that as more women undergo genetic testing, there is increased likelihood of finding variants of unknown significance or incidental discoveries. They caution that interpretation of these variants can be difficult and time consuming, and procedures should be developed for reporting these results to physicians and patients.

TECHNICAL DETAILS OF THE STUDY

Next-generation sequencing (NGS) refers to technologies that share the ability to parallel sequence millions of DNA templates. The terms second-generation (and third-generation) sequencing are used to describe the evolution of sequencing technology from the first-generation, dideoxy 'Sanger' sequencing. The new DNA sequencing technologies are expected to have a significant impact on the detection, management, and treatment of genetic diseases such as ovarian and breast cancer.

The second-generation sequencing assay described in the current report uses automated small amplicon PCR followed by sample pooling and sequencing with a second-generation instrument. The target region selected was thought to encompass the majority of pathogenic sequence changes in BRCA1 and BRCA2.

The investigators tested the assay using a set of 91 patient genomic DNA samples, 48 selected retrospectively and 43 prospectively. Comparing their results to those obtained by the standard dideoxy sequencing methodology, the researchers found 100% concordance between the two methods, with no false-positive or false-negative predictions. The method generated high-quality sequence coverage across all targeted regions with median coverage greater than 4,000-fold for each pooled sample. After some technical adjustments (such as setting the maximum depth parameter to an arbitrarily high value of 500,000 using SAMtools software and selecting 100,000 as the on-target alignments threshold), the method proved sensitive and specific for detecting variants in genetic sequences.

Eileen Leahy | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>