Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A class of RNA molecules protects germ cells from damage, Penn vet researchers show

16.11.2012
Passing one's genes on to the next generation is a mark of evolutionary success. So it makes sense that the body would work to ensure that the genes the next generation inherits are exact replicas of the originals.

New research by biologists at the University of Pennsylvania School of Veterinary Medicine has now identified one way the body does exactly that. This protective role is fulfilled in part by a class of small RNA molecules called pachytene piwi-interacting RNAs, or piRNAs.

Without them, germ-cell development in males comes to a halt. Because these play such an important role in allowing sperm to develop normally, the research indicates that defects in these molecules or the molecules with which they interact may be responsible for some cases of male infertility.

Jeremy Wang, an associate professor of developmental biology and director of the Center for Animal Transgenesis and Germ Cell Research at Penn Vet, and Ke Zheng, a postdoctoral researcher in Wang's lab, authored the study, which appears in PLOS Genetics.

Scientists know of 8 million different piRNAs in existence; they are the most abundant type of small non-coding RNA. The molecule piRNA gets its name because it forms complexes with piwi proteins. Earlier work had indicated that these piwi-piRNA complexes suppress the activity of transposable elements or "jumping genes," which are stretches of DNA that can change position and cause potentially damaging genetic mutations. These sequences are also known as transposons.

"There are about 50 human diseases caused by transposable elements, so it's important for the body to have a way to try to repress them," Wang said.

This transposon-suppressing activity had been confirmed in a group of piRNAs called pre-pachytene piRNAs, which are expressed before meiosis, the unique process by which germ cells divide. But Zheng and Wang wanted to investigate if a separate group of piRNAs that emerge during meiosis, called pachytene piRNAs, were also required for "silencing" transposons.

Working in male mice, the researchers manipulated an enzyme called MOV10L1, which is known to interact with piwi proteins and is believed to help produce piRNA molecules. They created a mutant mouse in which they could selectively inactivate MOV10L1 at specific stages before, during and after meiosis. The mice that lost the function of MOV10L1 before or at the pachytene stage of meiosis were sterile. When Zheng and Wang examined their germ cells more closely, they found that spermatogenesis had apparently come to a halt at the post-meiotic stage: Early stages of the germ cells were present, but the mice completely lacked mature sperm.

Further experiments allowed Zheng and Wang to pinpoint that MOV10L1 was playing a critical role at the pachytene stage. MOV10L1 mutants lacked pachytene piRNAs, but their levels of pre-pachytene piRNAs were unaffected, as the mutation was "turned on" after they had already been produced.

The researchers also found that, in the MOV10L1 mutants, piwi proteins congregated together along with mitochondria, suggesting that mitochondria may be involved in the generation or organization of pachytene piRNAs. Furthermore, the spermatids, or early-stage sperm, of the mutants had severe DNA damage. While the researchers suspected that the damage may have been caused because of transposons that had been freed from repression in the absence of piRNAs, they actually found that two common transposable elements were not de-repressed in the mutants. They also found a build-up of pachytene piRNA precursors in the testes of the mutants. Their findings raise the possibility that there is another mechanism by which damage occurs.

"It could be the accumulation of precursor molecules is causing some of the damage," Wang said.

This new function for MOV10L1, in playing an essential role in producing pachytene piRNAs, gives researchers a greater understanding of germ-cell development.

"This is the first time we've shown that pachtyene piRNA is required for maintaining genome integrity in the post-meiotic germ cells," Wang said. "It turns out that MOV10L1 is a master regulator of the piRNA pathway and is required for the production of all piRNAs, both pre-pachytene and pachytene."

Any disruptions to this "master regulator" role, therefore, could lead to problems.

"I think we're just beginning to appreciate the significance of this pathway," Wang said. "Mutations at various points in the pathway could lead to infertility."

This research was supported by the National Institutes of Health's National Institute of Child Health and Human Development.

Katherine Unger Baillie | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht Gut microbiome regulates the intestinal immune system, researchers find
19.12.2018 | Brown University

nachricht Greener days ahead for carbon fuels
19.12.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New megalibrary approach proves useful for the rapid discovery of new materials

19.12.2018 | Materials Sciences

Artificial intelligence meets materials science

19.12.2018 | Materials Sciences

Gut microbiome regulates the intestinal immune system, researchers find

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>