Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A certain type of neurons is more energy efficient than previously assumed

16.03.2018

Ion channels in interneurons are tuned for rapid and energy efficient signalling │Publication in Neuron

Theory and reality don’t always match completely. One contradiction, about how a type of neurons generates signals, was now resolved by researchers at the Institute of Science and Technology (IST) Austria. Writing in Neuron, Professor Peter Jonas and first author Hua Hu (previously postdoc at IST Austria, now Associate Professor in University of Oslo) reconcile the observation that fast-spiking, parvalbumin-expressing GABAergic interneurons (PV+-BCs) send trains of rapid signals, thought to be energy expensive, with the limited energy supply reaching the brain. They show that ion channels in the neuron are tuned so, that rapid signals are energy efficient.


A GABAergic interneuron studied by the researchers. Color code indicates energy efficiency of the neuron.

Peter Jonas

PV+-BCs are important in higher microcircuit functions, such as pattern separation, i.e. making similar patterns of neural activity more distinct, so we can distinguish between similar experiences. Previously, Jonas and Hu showed that the fast signalling achieved by these neurons is key to fulfil these microcircuit functions. PV+-BCs neurons generate high-frequency salvos of very brief action potentials (APs), or nerve impulses.

Short APs are considered energy expensive, as the fluxes of sodium (Na+) and potassium (K+) ions involved are thought to overlap in time. In an action potential, Na+- and K+-gated ion channels in the neuron open and close. Na+ channels open at the beginning of the AP, allowing Na+ to move into the axon, which causes depolarization. Repolarization of the membrane occurs when K+ channels open and K+ moves out of the axon.

The AP travels down the axon towards the axon terminal, where it signals to other neurons via the synapse. The ion fluxes during APs dissipate ion gradients, and energy is needed to re-establish these gradients. During short APs such as those in PV+-BCs neurons, Na+ and K+ fluxes are thought to extensively overlap. Such ion fluxes in opposite direction do not contribute to the actual AP, but nevertheless take energy to reverse.

The combination of short spikes and their high frequency in PV+-BCs neurons could pose a major challenge to the brain’s energy budget. Jonas and Hu investigated how the signalling properties of PV+-BCs neurons can be reconciled with the limited energy supply to the brain. Surprisingly, this theoretical contradiction does not translate to reality. “Scientists always tend to be disappointed when theory and experiment do not match. But this project is a beautiful example that we can learn much more from mismatches than from perfect agreements”, says Peter Jonas.

Studying functioning neurons is the only way to obtain the desired information, and the researchers therefore used brain slices to examine the axon of firing PV+-BCs, where APs are initiated and propagate. To obtain direct information from the axon, they used a technique called subcellular patch-clamp recording, or “nanophysiology”. They found that the energy required to generate the characteristic APs is only 1.6 times the theoretical minimum. Thus, APs in PV+-BCs are surprising energy efficient.

How can PV+-BCs neurons be energy efficient, but still signal rapidly? Hu and Jonas found that the specialized ion channels in PV+-BCs neurons are gated to optimize both fast signalling and energy efficiency. Na+ channels in PV+-BCs axons are inactivated very rapidly, while the Kv3-type K+ channels are activated with a delay. This complementary tuning minimizes the overlap between Na+ and K+ currents during brief APs and optimizes signalling, so that it is both fast and energy efficient. “Making the model increasingly more realistic, we found that fast signalling and high energy efficiency can be reconciled. This resolves a major contradiction”, Peter Jonas explains. Knowledge gained from such live recordings will help to further refine models of neuronal signalling and to better understand mechanisms underlying brain diseases.

About IST Austria – www.ist.ac.at

The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor’s or master’s degree in biology, neuroscience, mathematics, computer science, physics, and related areas.

Original article:
Jonas, Peter et al.: "Complementary tuning of Na+ and K+ channel gating underlies fast and energy-efficient action potentials in GABAergic interneuron axons"
DOI: 10.1016/j.neuron.2018.02.024

Weitere Informationen:

http://ist.ac.at/research/research-groups/jonas-group/ Research group of Prof. Jonas

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft
Further information:
https://ist.ac.at/de/

More articles from Life Sciences:

nachricht TU Dresden chemists develop noble metal aerogels for electrochemical hydrogen production and other applications
06.04.2020 | Technische Universität Dresden

nachricht First SARS-CoV-2 genomes in Austria openly available
03.04.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

 
Latest News

TU Dresden chemists develop noble metal aerogels for electrochemical hydrogen production and other applications

06.04.2020 | Life Sciences

Lade-PV Project Begins: Vehicle-integrated PV for Electrical Commercial Vehicles

06.04.2020 | Power and Electrical Engineering

Lack of Knowledge and Uncertainty about Algorithms in Online Services

06.04.2020 | Social Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>