Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a Cell’s Mitotic Motors Direct Key Life Processes

03.02.2009
In a cleverly designed experiment, cell biologists have discovered how dyneins organize chromosome placement to prepare for cell division. The surprise finding suggests it’s the motor domain of the nanoscale chemical engine, not the cargo domain as once believed, that directs pre-mitotic action.

University of Massachusetts Amherst biologists have discovered a secret of how cells organize chromosomes to prepare for dividing. Their unexpected finding is reported in this week’s issue of the journal, Current Biology.

The experiments sought to reveal how the cell’s tiny, two-part chemical engine known as dynein, just 40 nanometers in diameter, takes charge of mitosis and keeps the delicate strands of chromosomes in order and in position. Until now, cell biologists had assumed it was the dynein’s cargo domain that regulated this process. UMass Amherst cell biologist Wei-lih Lee and colleagues showed that it is the motor domain instead.

Dynein, like a delivery truck, carries cargo, Lee explains, but this protein truck is specialized because it interacts chemically and physically with the road. In the cell, this means dynein travels along segments of polymeric microtubule “roads” that grow and shrink as needed by adding or dropping sections. From experiments in budding yeast, Lee, with a talented postdoctoral fellow, Steven Markus, and biology junior fellow Jesse Punch, found that “dynein has a preference for locating at the ends of these microtubule tracks.”

Lee says a lot of credit for a cleverly designed and executed set of experiments goes to Markus, who cut the dynein engines into motor and cargo halves and challenged the yeast cells to divide with access to only one part of the protein at a time. Markus also designed brighter-than-usual fluorescent probes to attach to the two dynein parts, red for the engine, green for the cargo domain. The strategies worked. The UMass Amherst research team now has one of the most elegant and practical probes for studying dynein function. Lee says, “I’m already getting requests from other researchers who want to use our new probes.”

In this system, they observed that like a moving walkway at the airport, “dynein is a smart truck because it parks at the end of the microtubule, and ‘rides’ along as the track grows,” Lee explains. “Our findings show that the dynein’s motor domain, the engine’s core, is responsible for this end-binding property, which is surprising given that the same domain is used for walking along the track.”

Applying their new understanding to cell division, the researchers say, “our findings further suggest that the dynein engine is turned off when it is parked on the microtubule end, but then turned on upon reaching the proper attachment site in the daughter cell’s wall,” says Lee. “This mechanism allows the yeast cell to control dynein activation with high accuracy” and avoids potential problems of transporting an “activated” protein through the cell.

Results of this new knowledge in basic science are also relevant for human nerve cell function. “It has already been shown that nerve cells use the same mechanism as yeast does to move the cell body,” says Lee. Dynein malfunction can lead to mistakes in nerve cell migration which causes poor brain development disease such as lissencephaly.

This work was supported by National Institute of General Medical Sciences, the Marine Biological Laboratory, and the Biology Department HHMI Undergraduate Science Program.

Wei-lih Lee | Newswise Science News
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>