Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Cell’s ‘Cap’ of Bundled Fibers Could Yield Clues to Disease

04.12.2009
It turns out that wearing a cap is good for you, at least if you are a mammal cell.

Researchers from the Johns Hopkins Engineering in Oncology Center have shown that in healthy cells, a bundled “cap” of thread-like fibers holds the cell’s nucleus, its genetic storehouse, in its proper place.

Understanding this cap’s influence on cell and nuclear shape, the researchers say, could provide clues to the diagnosis and treatment of diseases such as cancer, muscular dystrophy and the age-accelerating condition known as progeria.

“Under a microscope, the nucleus of a sick cell appears to bulge toward the top, while the nucleus of a healthy cell appears as a flattened disk that clings to the base,” said principal investigator Denis Wirtz, professor of chemical and biomolecular engineering and director of the Engineering in Oncology Center. “If we can figure out how and why this shape-changing occurs, we may learn how to detect, treat or perhaps even prevent some serious medical disorders.”

Scientists have known that misshapen nuclei are an indicator of disease, Wirtz said, but they were not certain how a cell controlled the shape of its nucleus, the structure in mammal cells where genetic material resides. In a study published in the Nov. 10 issue of the Proceedings of the National Academy of Sciences, however, the research team led by Wirtz reported the discovery of a fibrous structure that holds the nucleus in its place. The researchers call this new network structure the perinuclear actin cap.

“In healthy cells, the perinuclear actin cap is a domed structure of bundled filaments that sits above the nucleus, sort of like a net that is tethered all around to the perimeter of the cell membrane,” Wirtz said. This configuration pushes the nucleus down toward the base of the cell and also creates the distinctive flattened shape of normal cells. Cells with cancer, muscular dystrophy or progeria, however, lack this distinctive cap, allowing the nucleus to float upward toward the top of the cell’s membrane. These diseased cells may appear more rounded and bulbous.

“The cap controls the shape of the nucleus by controlling the shape of the cell itself,” Wirtz said.

The perinuclear actin cap was discovered while the team was trying to find out if cell shape controls nucleus shape. By growing cells on a surface with alternating sticky and non-sticky stripes, the researchers noticed that as cells grew along a sticky stripe, their nuclei elongated as well. Using a confocal microscope -- a special kind of microscope that can view an object one “slice” at a time -- doctoral student Shyam Khatau was able to reconstruct the cell in three dimensions. By stacking the confocal microscope images together, Khatau, who is affiliated with the Johns Hopkins Institute for NanoBioTechnology, was able to produce short movies showing the 3-D structure of the cells, the nucleus and the perinuclear actin cap. (The movies are online at http://inbt.jhu.edu/outreach/media-library/video.)

“That’s when we saw the cap,” Khatau said, “and Dr. Wirtz realized we were on to something.”

The cap’s role in disease became evident when Khatau tested cells without the gene to produce lamin A/C, a protein found in the membrane of the nucleus of normal cells but absent in the nuclear membrane of cells from people with muscular dystrophy. Cells without lamin A/C failed to produce the perinuclear actin cap.

“We next plan to study how the cap’s effect on the shape of the nucleus affects what genes the cells express,” said Wirtz.

Khatau, who is pursuing his doctorate in the Department of Chemical and Biomolecular Engineering, is lead author of the journal article. Additional Johns Hopkins authors on this paper are Wirtz; doctoral student Christopher M. Hale and senior Meet Patel from the Whiting School of Engineering’s Department of Chemical and Biomolecular Engineering; and Peter C. Searson, a professor in the school’s Department of Materials Science and Engineering. Other co-authors were P. J. Stewart-Hutchinson and Didier Hodzic from the School of Medicine at the Washington University in St. Louis and Colin L. Stewart from the Institute of Medical Biology, Singapore.

This work was funded by the National Institutes of Health and the Muscular Dystrophy Association.

Color images and video of the researchers available; contact Mary Spiro.

Related Links:
PNAS journal article: http://www.pnas.org/content/106/45/19017.full.pdf+html
Johns Hopkins Engineering in Oncology Center: http://engineering.oncology.jhu.edu/
Johns Hopkins Institute for NanoBioTechnology: http://inbt.jhu.edu
Department of Chemical and Biomolecular Engineering: http://www.jhu.edu/chembe/

Mary Spiro | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>