Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A 'cardiac patch with bioink' developed to repair heart

31.03.2020

The heart is the driving force of circulating blood in the body and pumps blood to the entire body by repeating contraction and relaxation of the heart muscles continuously.

Human stem cells are used in the clinical therapies of a dead heart, which happens when a blood vessel is clogged or whole or a part of heart muscles is damaged.


Schematic diagram of the underlying mechanism of in vivo priming of BM-MSCs with HGF-eMSC

Credit: Jinah Jang (POSTECH)

The clinical use of human bone marrow-derived mesenchymal stem cells (BM-MSCs) have been expanded but failure of the transplanted stem cells in the heart still remains a problem. Recently, an international joint research team of POSTECH, Seoul St. Mary's Hospital, and City University of Hong Kong developed a 'cardiac patch with bioink' that enhanced the functionality of stem cells to regenerate blood vessels, which in turn improved the myocardial infarction affected area.

The joint research team consisted of Prof. Jinah Jang and Dr. Sanskrita Das of POSTECH Creative IT Engineering, Mr. Seungman Jung of POSTECH School of Interdisciplinary Bioscience and Bioengineering, Prof. Hun-Jun Park, Mr. Bong-Woo Park, and Ms. Soo-Hyun Jung of The Catholic University, and Prof. Kiwon Ban and his fellows from City University of Hong Kong.

The team mixed genetically engineered stem cells (genetically engineered hepatocyte growth factor-expressing MSCs, HGF-eMSCs) developed by SL Bigen. Co., Ltd to make bioink in the form of a patch and introduced a new therapy by transplanting it to a damaged heart.

They called this new strategy as 'in vivo priming'. The name came from the principle that maximized function of mesenchymal stem cells are maintained in vivo as well as through its exposure to the growth factor secreted by the genetically engineered stem cells.

The joint research team first genetically engineered the existing BM-MSCs to produce hepatocyte growth factor consistently to improve the therapeutic potential of stem cells. The engineered stem cells (HGF-eMSCs) were then mixed with BM-MSCs to make the bioink.

They transplanted the cardiac patch with this bioink to the heart muscles affected by myocardial infarction. Considering the limited amount of cells that could be transferred, they used heart-derived extracellular matrix bioink to make a cardiac patch.

Implanted cells in a patch survived longer in vivo and had more myocardiocytes survived than the only BM-MSCs transplanted experimental group. This was because the secretion of cytokine, which helps formation of blood vessels and cell growth was maximized and delivered nutrients fluently that promoted vascular regeneration and enhanced survival of the myocardiocytes.

The research team anticipated that this new method could be a breakthrough treatment of myocardial infarction as the implanted stem cells through HGF-eMSCs ultimately enhanced vascular regeneration and improved the myocardial infarction affected area.

"We can augment the function of adult stem cells approved by Ministry of Food and Drug Safety and FDA using this newly developed and promising 3D bioprinting technology with the engineered stem cells. It is our goal to develop a new concept of medicine for myocardial infarction in the near future," said Prof. Jinah Jang who led the research.

POSTECH began to develop medicine for cardiovascular diseases based on this newly developed bioprinting method with the research team from The Catholic University in 2017. Now, it is being tested in animals for efficacy evaluation with Chonnam National University. Also, the technology is already transferred to T&R Biofab, which is a company developing 3D printers, software, and bioinks to print cells.

###

The research is published in the recent issue of an international journal, Science Advances in the month of March 2020. This study was supported by the National Research Foundation of Korea, Bio & Medical Technology Development Program, President's Postdoc Fellowship grant, and ICT Consilience Creative Program grant funded by the Ministry of Science and ICT.

Media Contact

Jinyoung Huh
jyhuh@postech.ac.kr
82-542-792-415

Jinyoung Huh | EurekAlert!
Further information:
http://www.postech.ac.kr/eng/a-cardiac-patch-with-bioink-developed-to-repair-heart/#post-20562
http://dx.doi.org/10.1126/sciadv.aay6994

More articles from Life Sciences:

nachricht Human skin is an important source of ammonia emissions
27.05.2020 | Max-Planck-Institut für Chemie

nachricht Biotechnology: Triggered by light, a novel way to switch on an enzyme
27.05.2020 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

Human skin is an important source of ammonia emissions

27.05.2020 | Life Sciences

Algorithms, gold and holographic references boost biomolecule diffraction

27.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>