Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A breakthrough for brain tumor drug development

06.02.2019

A breakthrough for brain tumor drug development and personalized medicine published today in Nature

A breakthrough for brain tumor drug development and personalised medicine published today in Nature Scientific Reports.


VIDEO: SpheroMatrices is a spheroid tissue microarray that allows users to capture an entire 3D experiment on a single microscope slide providing a window into the structural and molecular information of the 3D model.With SpheroMatrices technology you can obtain detailed molecular information about the effects of candidate drugs on human tissue models, combining the benefits of 3D cultures with high throughput histology. Thus spheroMatrices maximizes the information obtained from costly 3D cell culture experiments.

Credit: Simon Plummer MicroMatrices CEO

24,000 patients are diagnosed with brain tumors every year with the 5yr survival for high grade glioblastomas (GBM) only 5%, with median survival of 15 months.

These poor statistics have remained static for 30 years due in part to a lack of human-relevant preclinical models for testing new drugs. In addition, high levels of inter-individual cellular and molecular heterogeneity of disease means each patient has unique treatment requirements, however the rapid pace of disease progression allows little time for individual assessments.

To address these challenges a multidisciplinary team of researchers in a public/private collaboration (MicroMatrices, Johns Hopkins University, the Mayo Clinic, and Perkin Elmer) have developed and evaluated a human induced pluripotent stem cell (IPSC) derived 3D organoid model for drug testing consisting of differentiated neurons and other non-neuronal brain cells (glial cells, astrocytes and oligodendrocytes) grown alongside patient-derived glioblastoma tumor cells. Accurate drug efficacy measurements were facilitated through the use of a microTMA-based high throughput histology platform (SpheroMatricesTM).

To investigate the potential of this platform, two chemotherapeutic agents were tested: temozolomide (TMZ), the current front line treatment option for glioblastoma, and an experimental therapy doxorubicin (DOX).

The study results indicated the system could predict a clinical response to TMZ and also demonstrated anti-tumor efficacy with DOX . Furthermore as the microTMA technology allows for multiplexing of different measurements, it was also observed that DOX acted via selective killing of tumour cells (apoptosis) with little or no effect on normal brain cells.

This system can be adapted for use with publicly available libraries of glioblastoma patient-derived cell lines, paving the way for the creation of a more efficient discovery platform for new therapies, ultimately offering a more personalized approach by matching patients to therapies that are more likely to work clinically.

In previous screens, the patient-derived cells were grown in immune-compromised mice, a model which cannot capitulate the environment of human tumours. By contrast, the organoid model system more closely mirrors a human-relevant microenvironment.

In addition, the microTMA technology, by making multiple parallel measurements of efficacy end-points, produces quantitative data supporting mechanistic insights and informative biomarkers with greater potential to translate to the clinic.

Simon Plummer CEO of MicroMatrices said 'this breakthrough study illustrates how human relevant 3D models can make an impact for drug development and personalised medicine'.

Media Contact

Simon Plummer
simonplummer@micromatrices.com
07-973-502-994

http://www.micromatrices.com 

Simon Plummer | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41598-018-38130-0

More articles from Life Sciences:

nachricht Dangerous pathogens use this sophisticated machinery to infect hosts
20.05.2019 | California Institute of Technology

nachricht When bees are freezing
20.05.2019 | Max-Planck-Institut für Polymerforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

New flying/driving robot developed at Ben-Gurion University of the Negev

20.05.2019 | Power and Electrical Engineering

A new approach to targeting cancer cells

20.05.2019 | Health and Medicine

5G transmission masts made of wood for an attractive and sustainable cityscape

20.05.2019 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>