Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Boost for Photosynthesis

24.01.2019

Photosynthesis is a fundamental biological process which allows plants to use light energy for their growth. Most life forms on Earth are directly or indirectly dependent on photosynthesis. Researchers at the Max Planck Institute of Biochemistry in Germany have collaborated with colleagues from the Australian National University to study the formation of carboxysomes – a structure that increases the efficiency of photosynthesis in aquatic bacteria. Their results, which were now published in Nature, could lead to the engineering of plants with more efficient photosynthesis and thus higher crop yields.

With the global population increasing by an estimated 80 million people each year, the demand for food is steadily on the rise. To meet this demand, scientists are working on strategies to improve the productivity of crops.


Cryo-EM structure of the linked complexes of CcmM (red) and Rubisco (green) in liquid droplets (yellow). Formation of this network is the first step in carboxysome biogenesis in cyanobacteria.

Illustration: Huping Wang, Andreas Bracher © MPI of Biochemistry

Photosynthesis – essential but inefficient

While most organisms have to take up nutrients to generate energy for their cells, plants and some microbes can fuel their cells with light energy.

In a process called photosynthesis, they convert water and carbon dioxide (CO2) to sugar and oxygen with the help of sunlight. The critical enzyme of this reaction is Rubisco, which catalyzes the fixation of CO2 from the atmosphere. However, Rubisco, which is estimated to be the most abundant enzyme on Earth, works slowly and inefficiently.

Instead of binding CO2, Rubisco can also react with oxygen. A lot of energy is lost in this side reaction. Therefore, scientists are trying to engineer a more efficient version of Rubisco to improve plant growth.

A team led by Manajit Hayer-Hartl, head of the research group “Chaperonin-assisted protein folding” at the Max Planck Institute of Biochemistry in Martinsried, has now made an important contribution to these efforts.

Cyanobacteria are aquatic microbes that perform photosynthesis. They have evolved a strategy to increase the efficiency of their Rubisco enzyme. Cyanobacteria locally increase the concentration of CO2 in specialized structures called carboxysomes and confine their Rubisco to these structures.

In this way, cyanobacteria reduce the energy that is lost in the side reaction with oxygen. The new study has now demonstrated how the formation of carboxysomes is initiated.

Trapping Rubisco for extra energy

Cyanobacteria use a helper protein called CcmM to capture Rubisco. CcmM is built of several repeat modules that resemble the small subunit of Rubisco – therefore it was long assumed that these modules replace the small subunits of Rubisco when the proteins interact, thereby linking Rubisco proteins.

However, the complex between CcmM and Rubisco is highly dynamic and therefore could not be solved by traditional structural biology methods. “In this study, we took advantage of the rapidly developing method of cryo-electron microscopy to capture these dynamic interactions”, says Huping Wang, shared first author of the study.

Using cryo-EM, the researchers showed that CcmM does not replace the small subunit of Rubisco but rather links Rubisco proteins together by an unexpected mechanism.

The interaction between CcmM and Rubisco causes de-mixing of the protein complex from other proteins in the cell. “This de-mixing of proteins is called phase separation, a process that concentrates proteins locally. In cyanobacteria, the protein shell of the carboxysome is then formed around the phase separated CcmM and Rubisco to capture them“, explains Xiao Yan, shared first author of the study. A similar process of phase separation also plays a role in neurodegenerative diseases such as Amyotrophic Lateral Sclerosis.

The formation of carboxysomes boosts photosynthesis because these microcompartments concentrate CO2 in the vicinity of Rubisco, making the enzyme more efficient. The current results greatly improve the understanding how these CO2-concentrating structures are formed.

Manajit Hayer-Hartl describes a potential application of the results of the study: “If we could transfer functioning carboxysomes into higher plants, this would give crops an extra boost by allowing them to fix CO2 more efficiently. The energy, which is usually lost in the reaction of Rubisco with oxygen, would go towards the production of biomass “. In the long-term, the insights from Hayer-Hartl’s research could contribute to the generation of more efficient crops, reduce the demand for fertilizers and improve the global food supply. [CW]

About Manajit Hayer-Hartl
Manajit Hayer-Hartl received her Bachelor of Science degree at the University of Stirling, Scotland, UK, where she afterwards gained her PhD. Her interest in structural and cellular biology motivated her to several postdoctoral fellowships at renowned research institutions, among them the Louis Pasteur Institute in Strasbourg, France and the Sloan-Kettering Institute in New York, USA. Hayer-Hartl joined the Max Planck Institute of Biochemistry in 1997 as group leader in the department “Cellular Biochemistry”. Since 2006, she is head of the research group “Chaperonin-assisted Protein Folding”. Her research focuses on chaperones and how these molecular machines assist in proper protein folding and assembly. Hayer-Hartl is an elected member of the European Molecular Biology Organization (EMBO) and of the German National Academy of Sciences (Leopoldina). For her research, she has received the Dorothy Crowfoot Hodgkin Award and the Charles F. Kettering Award.

About the Max Planck Institute of Biochemistry
The Max Planck Institute of Biochemistry (MPIB) belongs to the Max Planck Society, an independent, non-profit research organization dedicated to top level basic research. As one of the largest Institutes of the Max Planck Society, 850 employees from 45 nations work here in the field of life sciences. In currently eight departments and about 25 research groups, the scientists contribute to the newest findings in the areas of biochemistry, cell biology, structural biology, biophysics and molecular science. The MPIB in Munich-Martinsried is part of the local life science campus where two Max Planck Institutes, a Helmholtz Center, the Gene-Center, several bio-medical faculties of two Munich universities and several biotech-companies are located in close proximity. http://www.biochem.mpg.de

Wissenschaftliche Ansprechpartner:

Dr. Manajit Hayer-Hartl
Chaperonin-assisted Protein Folding
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-mail: mhartl@biochem.mpg.de
http://www.biochem.mpg.de/hayer-hartl

Originalpublikation:

Wang H*, Yan X*, Aigner H, Bracher A, Nguyen ND, Hee WY, Long BM, Price GD, Hartl FU, Hayer-Hartl M. Rubisco condensate formation by CcmM in β-carboxysome biogenesis. Nature, January 2019. *These authors contributed equally to this work.
http://dx.doi.org/10.1038/s41586-019-0880-5

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht How flowers adapt to their pollinators
06.12.2019 | University of Vienna

nachricht What does DNA's repair shop look like? New research identifies the tools
06.12.2019 | New York University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Developing a digital twin

06.12.2019 | Information Technology

A solution for cleaning up PFAS, one of the world's most intractable pollutants

06.12.2019 | Power and Electrical Engineering

How flowers adapt to their pollinators

06.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>