Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A biosphere without borders – Call for a global effort to unlock the Earth’s microbiome

29.10.2015

Without microorganisms, we would not and could not exist

More than three billion years ago, cyanobacteria provided Earth’s atmosphere with enough oxygen to allow us humans to thrive. Ever since, these and other microorganisms have been shaping our lives. They provide fertile soils, break down pollutants, supply us with energy and digest the food in our guts. But despite these and many other crucial roles, we know only little about most microorganisms, their interactions and their functions.


Research on simple model systems such as these worms is revealing how animals, including humans, benefit from their bacterial inhabitants.

Christian Lott/HYDRA Institute

„This must change“, says Nicole Dubilier of the Max Planck Institute for Marine Microbiology in Bremen, Germany, „particularly in view of the tremendous challenges we face in the 21st century. We need to gain a comprehensive understanding of our planet's microorganisms, and this can only be achieved through a global research initiative.”

Creating and sharing genomic data effectively

Dubilier refers to a call in this week’s Science magazine for a US-based Unified Microbiome Initiative (UMI). For Dubilier and her co-authors Margaret McFall-Ngai of the Pacific Biosciences Research Center in Hawaii and Liping Zhao of Shanghai Jiao Tong University in China, this initiative falls short of the mark. In a comment published this week in Nature, they call for an International Microbiome Initiative (IMI) that reaches beyond US borders. Like an umbrella organisation it would embrace and unite national research efforts.

These calls for microbiome initiatives are fuelled by the revolutionary findings that recent DNA-sequencing technology has revealed. The information gained in the last decade has skyrocketed due to the low costs of high-throughput sequencing, advances in sample preparation, progress in computational power and the development of sophisticated bioinformatic tools that make sense of sequence data.

This quantum leap in our ability to analyse our planet's microbial communities has led to the discovery of life forms and communities we had no idea existed until recently. For example, analyses of the human microbiome, that is all the microorganisms on and in the human body, have revealed that we are colonized by as many as 10 000 bacterial species that influence every part of life from our digestion to our emotions.

One of the main problems of genomic research is that many studies cannot be compared because of differences in the way samples were taken and the data was analysed. For example, depending on the software packages that are used to analyse the sequence data, the number of bacterial species within the exact same dataset can vary by several orders of magnitude. Only a joint effort such as the proposed IMI can develop comprehensive standards that all future studies can abide by. “This would allow us to pool all the numerous individual studies into a universal dataset, which could be accessed by scientists across the globe”, Dubilier explains.

International and interdisciplinary

To make an IMI successful, science must overcome more than just national borders. “We must also learn to think beyond our own disciplines and communicate with scientists from other research fields”, write Dubilier and her co-authors. “We need mathematicians and informaticians to help us tease apart meaningful information from the mountains of sequence data. Chemists, physicists and engineers are needed to help develop new methods and instruments that will allow us to understand how microbes interact with each other and their environment.”

Generating more and more sequence data is not enough. „We are now realizing how essential – and time consuming – it is to go beyond just cataloguing microorganisms" says Dubilier. „But only then we will be able to gain a deeper understanding of the role that microorganisms play in providing essential ecological, social and economical services to humankind.”

Understand and use sustainably

An initiative such as the IMI could pave the way for a comprehensive understanding of our planet’s microbiome. This understanding will be critical for solving many of today’s challenges such as environmental degradation, climate change, population growth, or the need for alternative energy sources. Moreover, an IMI would be able to ensure that data and knowledge is made available to countries that may not have the funds to invest in their own global-scale projects.

It is critical that the IMI is launched quickly, Dubilier and her colleagues write. Before national initiatives such as the current US call are well underway, IMI’s common guidelines and targets should be discussed and agreed upon to form a common framework for national initiatives. „Otherwise we run the risk of repeating past mistakes”, says Dubilier. “Furthermore, an international initiative would be able to bring together the best experts from around the world and across all disciplines and provide them with the opportunity to work together on common goals.”

The scientists call on public agencies as well as private foundations to support and help finance the IMI. „So much can be gained by an international, interdisciplinary and concerted effort to create an IMI, while nothing is lost to national initiatives. On the contrary, more uncoordinated national microbiome programmes will almost certainly waste research efforts and taxpayers’ money. Let’s transcend national silos and gain universal insights that will benefit all humankind“, write Dubilier and her colleagues.


Addendum:

The microbiome:
The microbial biome is the community of microorganisms in a given environment. The environment can be the human gut, humans as a whole, a sample of soil, the world’s oceans, or the entire planet Earth.

One initiative, four goals:
Dubilier and her colleagues suggest four goals of the IMI:
Guidelines: Set standards for methods, data analysis, data sharing and intellectual property rights and ensure their implementation.
Priorities: Develop a common research agenda that will allow comparative analyses at local to global scales.
Tools: Identify new cross-disciplinary methods for microbiome studies.
Forums: Establish platforms for the discussion and exchange of research within and between nations, develop training programmes for future scientists and outreach projects.
The need for common standards in genomic research is well recognised. The Genomic Standards Consortium (GSC), for example, which is also supported by the Max Planck Institute for Marine Microbiology, calls for common standards in the description of genomes and the exchange and integration of genomic data.

Original publication in Nature:
Nicole Dubilier, Margaret McFall-Mgai and Liping Zhao (2015): Create a global microbiome effort. Nature 529 (631-634).
DOI: 10.1038/526631a

Publication in Science:
A. P. Alivisatos, M. J. Blaser, E. L. Brodie, M. Chun, J. L. Dangl, T. J. Donohue, P. C. Dorrestein, J. A Gilbert, J. L. Green, J. K. Jansson, R. Knight, M. E. Maxon, M. J. McFall-Ngai, J. F. Miller, K. S. Pollard, E. G. Ruby, S. A. Taha, Unified Microbiome Initiative Consortium (2015): A unified initiative to harness Earth’s microbiomes. Science 350 (503-504).
DOI: 0.1126/science.aac8480

Contact:

Prof. Dr. Nicole Dubilier
Tel.: +49 421 2028 932
Mail: ndubilie(at)mpi-bremen.de

Dr. Fanni Aspetsberger
Media contact
Tel.: +49 421 2028 645
Mail: faspetsb(at)mpi-bremen.de

Dr. Manfred Schlösser
Media contact
Tel.: +49 421 2028 704
Mail: mschloes(at)mpi-bremen.de

In this week’s edition of „Nature“, Nicole Dubilier from the Max Planck Institute in Bremen, Germany, joins forces with colleagues from Hawaii and China to call for a combined and global exploration of the Earth’s microbes.

Weitere Informationen:

http://www.mpi-bremen.de

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>