Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A better way to read the genome

12.10.2015

If your genome was a library, some genes would be 'Choose Your Own Adventure' novels.

UConn researchers have sequenced the RNA of the most complicated gene known in nature, using a hand-held sequencer no bigger than a cell phone.


As a strand of DNA moves through the MinION nanopore, the MinION 'sees' five nucleotides at a time. Every set of five nucleotides produces a characteristic current, allowing the MinION to read out the DNA code in a single, continuous stream.

Credit: Yesenia Carrero/UConn

If DNA is the blueprint of life, RNA is the construction contractor who interprets it, so sequencing RNA tells you what's really happening inside a cell.

Genomicists Brenton Graveley from the UConn Institute of Systems Genomics, postdoctoral fellow Mohan Bolisetty, and graduate student Gopinath Rajadinakaran teamed up with UK-based Oxford Nanopore Technologies to show that the company's MinION nanopore sequencer can sequence genes faster, better, and at a much lower cost than the standard technology. They published their findings on Sept. 30 in Genome Biology.

... more about:
»DNA »Genome »Genomics »RNA »fruit fly »genes »nanopore »sequence

If your genome was a library and each gene was a book, some genes would be straightforward reads - but some would be more like a "Choose Your Own Adventure" novel. Researchers often want to know which version of the gene is actually expressed in the body, but for complicated choose-your-own-adventure genes, that has been impossible.

Graveley, Bolisetty, and Rajadinakaran solved the puzzle in two parts. The first was to find a better gene-sequencing technology. In order to sequence a gene using the old, existing technology, researchers first make lots of copies of it, using the same chemistry our bodies use. They then chop up the gene copies into tiny pieces, read each tiny piece, and then, by comparing all the different pieces, try to figure out how they were originally put together. The technique hinges on the likelihood that not all the copies got chopped up into exactly the same pieces. Imagine watching different scenes from a movie, out of order. If you then watched the same movie, but cut into scenes at slightly different places, you could compare the two versions and start to figure out which scenes connect to which.

That technique won't work for choose-your-own-adventure genes, because if you copy them the way the body does, using RNA, each copy can be slightly - or very - different from the next. Such different versions of the same gene are called isoforms. When the different isoforms get chopped up and sequenced, it becomes impossible to accurately compare the pieces and figure out which versions of the gene you started with.

If the gene were a movie, "you wouldn't be able to tell that scenes 1 and 2 were present together," Bolisetty says.

Then last year, the nearly impossible suddenly became possible. Oxford Nanopore, a company based in the UK, released its new nanopore sequencer, and offered one to Graveley's lab. The nanopore sequencer, called a MinION, works by feeding a single strand of DNA through a tiny pore. The pore can only hold five DNA bases - the 'letters' that spell out our genes - at a time. There are four DNA bases, G, A, T, and C, and 1,024 possible five-base combinations. Each combination creates a different electrical current in the nanopore. GGGGA makes a different current than AGGGG, which is different again than CGGGG. By feeding the DNA through the pore and recording the resulting signal, researchers can read the sequence of the DNA.

For the second part of the solution, Graveley, Bolisetty, and Rajadinakaran decided to go big. Instead of sequencing any old choose-your-own-adventure gene, they chose the most complex one known, Down Syndrome cell adhesion molecule 1 (Dscam1), which controls the wiring of the brain in fruit flies. Dscam1 has the potential of making 38,016 possible isoforms, and every fruit fly has the potential to make every one of them, yet how many of these versions are actually made remains unknown.

Dscam1 looks like this: X-12-X-48-X-33-X-2-X, where X's denote sections that are always the same, and the numbers indicate sections that can vary (the number itself shows how many different options there are for that section).

To study how many different isoforms of Dscam1 actually exist in a fly's brain, the researchers first had to convert Dscam1 RNA into DNA. If DNA is the book or set of instructions, RNA is the transcriber that copies the book so that it can be translated into a protein. The DNA includes the instructions for all 38,016 isoforms of the Dscam1 gene, while each individual Dscam1 RNA contains the instructions for just one. No one had yet used a MinION to sequence copies of RNA, and though it was likely it could be done, demonstrating it and showing how well it worked would be a substantial advance in the field.

Rajadinakaran took a fruit fly brain, extracted the RNA, converted it into DNA, isolated the DNA copies of the Dscam1 RNAs, and then ran them through the MinION's nanopores. In this one experiment, they not only found 7,899 of the 38,016 possible isoforms of Dscam1 were expressed but also that many more, if not all versions are likely to be expressed.

"A lot of people said 'The MinION will never work,'" Graveley says, "but we showed it works using the most complicated gene known."

The study demonstrates that gene sequencing technology can now be accessed by a much broader range of researchers than was previously possible, since the MinION is both relatively inexpensive and highly portable so that it requires almost no lab space.

"This type of cutting-edge work puts UConn at the forefront of technology development and strengthens our portfolio of genomics research," says Marc Lalande, director of UConn's Institute for Systems Genomics. "Also, thanks to the investments in genomics through the University's Academic Plan, Brent Graveley can leverage his expertise so that faculty and students across our campuses will successfully compete for grant dollars and launch bioscience ventures."

Graveley will speak about the research at the Oxford Nanopore MinION Community Meeting at the New York Genome Center on Dec. 3.

As for next steps, the researchers plan on going even bigger: sequencing every bit of RNA from beginning to end inside a single cell, something that cannot be done with traditional gene sequencers.

"This technology has amazing potential to transform how we study RNA biology and the type of information we can obtain," says Graveley. "Plus the fact that the MinION is a hand-held sequencer that you plug into a laptop is simply unbelievably cool!"

Media Contact

Kim Krieger
kim.krieger@uconn.edu
202-236-0030

 @UCToday

http://www.uconn.edu 

Kim Krieger | EurekAlert!

Further reports about: DNA Genome Genomics RNA fruit fly genes nanopore sequence

More articles from Life Sciences:

nachricht Microbes can grow on nitric oxide (NO)
18.03.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Novel methods for analyzing neural circuits for innate behaviors in insects
15.03.2019 | Kanazawa University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>