Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A 24-karat Gold Key to Unlock the Immune System

27.03.2012
Developing a drug or vaccine requires a delicate balancing act with the immune system.
On one hand, medications need to escape detection by the immune system in order to perform their function. But vaccinations — de-activated versions of a disease or virus — need to do the reverse. They prompt the immune system to create protective antibodies. But scientists are still stumped by how the immune system recognizes different particles, and how it chooses whether or not to react against them.

Using nanoparticles made of pure gold, Dr. Dan Peer, head of Tel Aviv University's Laboratory of Nanomedicine at the Department of Cell Research and Immunology and the Center for Nanoscience and Nanotechnology, with a team including Drs. Meir Goldsmith and Dalit Landesman-Milo and in collaboration with Prof. Vincent Rotello and Dr. Daniel Moyano from the University of Massachusetts at Amherst, has developed a new method of introducing chemical residues into the immune system, allowing them to note the properties that incur the wrath of immune cells. Because the gold flecks are too small to be detected by the immune system, the immune system only responds when they are coated with different chemical residues.

This breakthrough could lead to an increased understanding of the properties of viruses and bacteria, better drug delivery systems, and more effective medications and vaccinations. Their study was published in the Journal of the American Chemical Society.

A tool for exploration

To begin probing the immune system, researchers used particles of gold, approximately two nanometers in diameter, and covered them with various chemical residues. Only when water-resistant residues were introduced did the immune system respond to their presence. That established a demonstrable link between hydrophobicity — the degree to which a molecule repels water — and the reaction of the immune system.

This idea has a basis in the normal functioning of the immune system, Dr. Peer explains. During cell death, the hydrophobic areas of the cell membrane become exposed. The immune system then realizes that damage has occurred and begins to alert neighboring cells.

The researchers discovered that the same principle held true for the chemicals added to the gold particles' surface. The more "water-hating" the particle is, the more actively the immune system will mobilize against it, he says.

Dr. Peer observes that this is only the first step in a long line of experiments. "We are using these gold particles to tackle the question of how the immune system recognizes different particles, which might include features such as geometry, charge, curvature, and so much more. Now that we know the tool works, we can build on it," he says.

Testing the "Danger Model"

Until now, scientists have developed theories about how the immune system functions, but have lacked the machinery to test these ideas. One such theory is the "Danger Model" by Prof. Polly Matzinger, which hypothesizes that cellular damage interacts with immune cells at the membrane level. Once they identify the foreign molecule as a "danger," the immune cells send signals throughout the immune system. Their initial experiment with hydrophobicity was designed to generate a toolbox for probing this theory, says Dr. Peer, whose investigations included both in vitro and in vivo experiments using mouse immune cells.

In the future, researchers will study various bacterial, viral, or damaged cells and to make the gold nanoparticles even more similar, thereby discovering which elements of dangerous particles are calling the body's immune system to arms. "We now have the capability of using nanomaterials to probe the immune system in a very accurate manner," says Dr. Peer, a breakthrough that could revolutionize the way we understand the immune system.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>