Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

4 genes indentified that influence levels of 'bad' cholesterol

16.05.2013
Scientists at the Texas Biomedical Research Institute in San Antonio have identified four genes in baboons that influence levels of "bad" cholesterol. This discovery could lead to the development of new drugs to reduce the risk of heart disease.

"Our findings are important because they provide new targets for the development of novel drugs to reduce heart disease risk in humans," said Laura Cox, Ph.D., a Texas Biomed geneticist.

"Since these genes have previously been associated with cancer, our findings suggest that genetic causes of heart disease may overlap with causes of some types of cancer." The new study, funded by the National Institutes of Health (NIH), is published online and will appear in the July print issue of the Journal of Lipid Research. It can be found at: http://www.jlr.org/content/early/2013/05/06/jlr.M032649.full.pdf+html.

Texas Biomed scientists screened their baboon colony of 1,500 animals to find three half-siblings with low levels of low density lipoprotein (LDL), or "bad,"' cholesterol, and three half-siblings with high levels of LDL. In the study, these animals were fed a high-cholesterol, high-fat diet for seven weeks. Scientists then used gene array technology and high throughput sequencers to home in on the genes expressed in the two groups and differentiate those in the low LDL groups from those in the high LDL group. They discovered that four genes (named TENC1, ERBB3, ACVR1B, and DGKA) influence LDL levels. Interestingly, these four genes are part of a signaling pathway important for cell survival and disruption of this pathway promotes some types of cancer.

It is well-known that a high level of LDL is a major risk factor for heart disease. Despite concerted efforts for the past 25 years to manage cholesterol levels through changes in lifestyle and treatment with medications, heart disease remains the leading cause of death in the United States and around the world. It will account for one out of four U.S. deaths in 2013, according to the American Heart Association.

Heart disease is a complex disorder thought to be a result of interactions between genetic and environmental factors, which occur primarily through diet. To understand why humans have different levels of LDL and thus variation in risk for heart disease, the genetic factors causing these differences need to be understood.

However, these studies are difficult to do in humans because it's practically impossible to control what people eat. Instead, Texas Biomed scientists are using baboons, which are similar to humans in their physiology and genetics, to identify genes that influence heart disease risk.

The new research also suggests that knowing many of the genes responsible for heart disease may be necessary to devise effective treatments. For example, several genes may need to be targeted at once to control risk.

The next step in this research is to find the mechanism by which these genes influence LDL cholesterol. "That starts to give us the specific targets for new therapies." Cox said. If all goes well, this information may be available within two years.
Other Texas Biomed scientists on the study included Genesio Karere, Ph.D.; Jeremy Glenn, B.S.; Shifra Birnbaum, B.S.; David Rainwater, Ph.D.; Michael Mahaney, Ph.D.; and John L. VandeBerg, Ph.D.

This research was supported by NIH grants P01 HL028972-27, P01 HL028972 Supplement, and P51 OD011133. It was conducted in part in facilities constructed with support grants C06 RR013556 and C06 RR015456.

Texas Biomed, formerly the Southwest Foundation for Biomedical Research, is one of the world's leading independent biomedical research institutions dedicated to advancing global human health through innovative biomedical research.

Located on a 200-acre campus on the northwest side of San Antonio, Texas, the Institute partners with hundreds of researchers and institutions around the world, targeting advances in the fight against emerging infectious diseases, AIDS, hepatitis, malaria, parasitic infections and a host of other diseases, as well as cardiovascular conditions, diabetes, obesity, cancer, psychiatric disorders, and problems of pregnancy. For more information on Texas Biomed, go to http://www.TxBiomed.org, or call Joe Carey, Texas Biomed's Vice President for Public Affairs, at 210-258-9437.

Joseph Carey | EurekAlert!
Further information:
http://www.txbiomed.org

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>