Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D printer inks from the woods

30.05.2017

Empa researchers have succeeded in developing an environmentally friendly ink for 3D printing based on cellulose nanocrystals. This technology can be used to fabricate microstructures with outstanding mechanical properties, which have promising potential uses in implants and other biomedical applications.

In order to produce 3D microstructured materials for automobile components, for instance, Empa researchers have been using a 3D printing method called “Direct Ink Writing” for the past year (DIW, see box). During this process, a viscous substance – the printing ink – is squeezed out of the printing nozzles and deposited onto a surface, pretty much like a pasta machine.


Rod-like cellulose nanocrystals (CNC) approximately 120 nanometers long and 6.5 nanometers in diameter under the microscope. (Image: Empa)

Empa researchers Gilberto Siqueira and Tanja Zimmermann from the Laboratory for Applied Wood Materials have now succeeded, together with colleagues from Harvard University and ETH Zürich, in developing a new, environmentally friendly 3D printing ink made from cellulose nanocrystals (CNC).

Cellulose, along with lignin and hemicellulose, is one of the main constituents of wood. The biopolymer consists of glucose chains organized in long fibrous structures. In some places the cellulose fibrils exhibit a more ordered structure. "The places with a higher degree of order appear in a more crystalline form.

... more about:
»3D printer »Cellulose »Empa »Nanocrystals »woods

And it is these sections, which we can purify with acid, that we require for our research", explains Siqueira. The final product is cellulose nanocrystals, tiny rod-like structures that are 120 nanometers long and have a diameter of 6.5 nanometers.

And it is these nanocrystals that researchers wanted to use to create a new type of environmentally friendly 3D printing ink. Previous inks contained a rather small proportion of “biological” materials, with a maximum of 2.5 percent CNC. The Empa team wished to increase this proportion, as they have now succeeded in doing – their new inks contain a full 20 percent CNC.

"The biggest challenge was in attaining a viscous elastic consistency that could also be squeezed through the 3D printer nozzles", says Siqueira. The ink must be “thick” enough so that the printed material stays “in shape” before drying or hardening, and doesn't immediately melt out of shape again.

The first CNC mixtures were water-based. This did work in principle, but yielded a very brittle material. Therefore, Siqueira and his colleagues developed a second, polymer-based recipe that had a decisive advantage: after printing and hardening using UV radiation, the CNC “cross-linked” with polymer building blocks, which gave the composite material a significantly higher degree of mechanical rigidity.

Bringing things together despite resistance

What sounds quite simple in retrospect caused the Empa team a great deal of head-scratching. Siqueira: "Most polymers are water-repellent or hydrophobic, whereas cellulose attracts water – it is hydrophilic. As a result they are not very compatible." So the researchers first of all had to chemically modify the CNC surface.

After the first attempts at printing and X-ray analysis of the obtained microstructures, the researchers noticed that the CNC in the printed object had aligned itself almost perfectly in the direction it was printed in. They concluded that the mechanical strength used to push the ink through the printing nozzle was sufficient to align it. "It is pretty interesting that one can so easily control the direction of the nanocrystals, for example, if you want to print something that should have a specific mechanical rigidity in a certain direction", says Siqueira.

Lots and lots of possibilities

These outstanding mechanical properties represent a decisive advantage compared to other materials such as carbon fibers, which are also used in DIW inks. In addition, the new kind of ink from the Empa lab is made from a renewable material – cellulose.

"Cellulose is the most frequently occurring natural polymer on Earth", says Siqueira. It is not just found in trees, but also in other plants and even in bacteria. The crystals, which are isolated from various cellulose sources, are morphologically different from each other and differ in size, but not in their properties. And they may also be of interest to, for example, the automobile industry or for packaging of any kind.

"However, the most important area of application for me is in biomedicine", says Siqueira, "for example in implants or prostheses". The Empa researcher is convinced that the CNC material is suitable for a wide variety of different applications due to its outstanding mechanical properties, as well as the possibility of chemical modification and alignment during printing.

These possibilities are currently being investigated further at Empa. A PhD student is currently focusing on the further development of the materials and the printing method for other applications. In addition, a Master’s student intends to develop other “biological” inks. "Research in this field is only just beginning", says Gilberto Siqueira. "Printing with biopolymers is currently a very hot topic."

Weitere Informationen:

http://www.empa.ch/web/s604/cellulose-ink

Cornelia Zogg | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Further reports about: 3D printer Cellulose Empa Nanocrystals woods

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>