Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

£2 million study to reveal workings of dementia genes

23.09.2008
University of Manchester scientists are to investigate the biological causes of the second most common form of dementia after Alzheimer’s, thanks to a prestigious £1.9 million senior fellowship award from the Medical Research Council.

Frontotemporal lobar degeneration (FTLD) is a group of dementias that affect the frontal and temporal lobes of the brain and are characterised by behaviour and language dysfunction, rather than the memory loss associated with Alzheimer’s disease (AD).

FTLD, which affects about 50,000 people in the UK, also differs from AD in that it targets younger people: FTLD sufferers are usually in their 50s or 60s, although people as young as their 20s have also fallen victim to FTLD. AD sufferers tend to be older.

“Alzheimer’s patients lose their awareness of space and time, whereas FTLD can result in changes in personality as well as speech and language difficulties,” said Dr Stuart Pickering-Brown, who is leading the research.

“Sufferers can become apathetic or exhibit behaviour at the other extreme and lose normal social values which lead them to act inappropriately.

“Speech and language difficulties fall into two main types: sufferers can develop problems with grammar and pronunciation or have semantic dementia where they lose the information content of language.

Errors in two genes – tau and progranulin – have been identified as causes for FTLD but these only account for 10% of cases. The University of Manchester team plan to investigate the role other genes may play in the disease.

“Our research suggests other genes may be important in regulating the amount of tau and progranulin in the brain,” said Dr Pickering-Brown, who is based in the School of Translational Medicine.

“Progranulin is associated with wound healing and little is known about its function in the brain, so we now plan to study the effects of progranulin on cells and explore how it is affected by other genes.”

At the end of the five year study, the team hope to have a much clearer understanding of the genetic causes underlying FTLD.

“Understanding the biological problems that lead to FTLD will help in diagnosing the condition and ultimately allow us to find future therapies for patients.”

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

Further reports about: Alzheimer Dysfunction FTLD Tau dementia dementia genes genes progranulin

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>