Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2,000 atoms in two places at once

02.10.2019

A new record of quantum superposition

The quantum superposition principle has been tested on a scale as never before in a new study by scientists at the University of Vienna in collaboration with the University of Basel.


Artistic illustration of the delocalization of the massive molecules used in the experiment.

Credit: © Yaakov Fein, Universität Wien

Usage Restrictions: The image may only be used with appropriate caption or credit.

Hot, complex molecules composed of nearly two thousand atoms were brought into a quantum superposition and made to interfere.

By confirming this phenomenon - "the heart of quantum mechanics", in Richard Feynman's words - on a new mass scale, improved constraints on alternative theories to quantum mechanics have been placed. The work will be published in Nature Physics.

Quantum to classical?

The superposition principle is a hallmark of quantum theory which emerges from one of the most fundamental equations of quantum mechanics, the Schrödinger equation.

It describes particles in the framework of wave functions, which, much like water waves on the surface of a pond, can exhibit interference effects. But in contrast to water waves, which are a collective behavior of many interacting water molecules, quantum waves can also be associated with isolated single particles.

Perhaps the most elegant example of the wave nature of particles is the double-slit experiment, in which a particle's wave function simultaneously passes through two slits and interferes.

This effect has been demonstrated for photons, electrons, neutrons, atoms and even molecules, and it raises a question that physicists and philosophers have struggled with since the earliest days of quantum mechanics: how do these strange quantum effects transition into the classical world with which we are all familiar

Experimental approach

The experiments by Markus Arndt and his team at the University of Vienna approach this question in the most direct way possible, that is, by showing quantum interference with ever more massive objects.

The molecules in the recent experiments have masses greater than 25,000 atomic mass units, several times larger than the previous record. One of the largest molecules sent through the interferometer, C707H260F908N16S53Zn4, is composed of more than 40,000 protons, neutrons, and electrons, with a de Broglie wavelength that is a thousand times smaller than the diameter of even a single hydrogen atom.

Marcel Mayor and his team at the University of Basel used special techniques to synthesize such massive molecules that were sufficiently stable to form a molecular beam in ultra-high vacuum. Proving the quantum nature of these particles also required a matter-wave interferometer with a two-meter long baseline that was purpose-built in Vienna.

Alternative quantum models and macroscopicity

One class of models which aims to reconcile the apparent transition from a quantum to a classical regime predicts that the wave function of a particle spontaneously collapses with a rate proportional to its mass squared.

By experimentally showing that a superposition is maintained for a heavy particle for a given length of time therefore directly places bounds on how often and how localized such a collapse process can be. In these experiments the molecules remained in a superposition for more than 7 ms, long enough to set new interferometric bounds on alternative quantum models.

A generalized measure called macroscopicity is used to classify just how well alternative models are ruled out by such experiments, and the experiments of Fein et al. published in Nature Physics indeed represent an order of magnitude increase in macroscopicity.

"Our experiments show that quantum mechanics, with all its weirdness, is also amazingly robust, and I'm optimistic that future experiments will test it on an even more massive scale," says Fein. The line between quantum and classical is getting blurrier all the time.

###

Publication in Nature Physics

"Quantum superposition of molecules beyond 25 kDa", Y. Y. Fein, P. Geyer, P. Zwick, F. Kia?ka, S. Pedalino, M. Mayor, S. Gerlich, and M. Arndt, Nat. Phys. (2019). doi: 10.1038/s41567-019-0663-9; https://www.nature.com/articles/s41567-019-0663-9

Media Contact

Markus Arndt
markus.arndt@univie.ac.at
43-142-775-1205

 @univienna

http://www.univie.ac.at/en/ 

Markus Arndt | EurekAlert!
Further information:
https://medienportal.univie.ac.at/presse/aktuelle-pressemeldungen/detailansicht/artikel/2000-atoms-in-two-places-at-once/
http://dx.doi.org/10.1038/s41567-019-0663-9

Further reports about: Electrons Nature Physics QUANTUM neutrons quantum mechanics water waves

More articles from Life Sciences:

nachricht 'Poisoned arrowhead' used by warring bacteria could lead to new antibiotics
02.10.2019 | Imperial College London

nachricht A promising antibody
01.10.2019 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Jellyfish's 'superpowers' gained through cellular mechanism

Jellyfish are animals that possess the unique ability to regenerate body parts. A team of Japanese scientists has now revealed the cellular mechanisms that give jellyfish these remarkable "superpowers."

Their findings were published on August 26, 2019 in PeerJ.

"Currently our knowledge of biology is quite limited because most studies have been performed using so-called model animals like mice, flies, worms and fish...

Im Focus: Many gas giant exoplanets waiting to be discovered

There is an as-yet-unseen population of Jupiter-like planets orbiting nearby Sun-like stars, awaiting discovery by future missions

There is an as-yet-unseen population of Jupiter-like planets orbiting nearby Sun-like stars, awaiting discovery by future missions like NASA's WFIRST space...

Im Focus: Spider silk: A malleable protein provides reinforcement

Scientists from the University of Würzburg have discovered that spider silk contains an exceptional protein. It generates high bonding strength by making use of an amino acid scientists have hitherto paid little attention to. The finding could have important implications in many areas.

Why are the lightweight silk threads of web spiders tougher than most other materials? Scientists from the Universities of Würzburg and Mainz teamed up to find...

Im Focus: Symbiosis as a tripartite relationship

Joint press release by Kiel University and the GEOMAR Helmholtz Centre for Ocean Research Kiel

Investigation of viral communities of sponges allows new insights into the mechanisms of symbiosis

Im Focus: How to design efficient materials for OLED displays

For applications such as light-emitting diodes or solar cells, organic materials are nowadays in the focus of research. These organic molecules could be a promising alternative to currently used semiconductors such as silicon or germanium and are used in OLED displays. A major problem is that in many organic semiconductors the flow of electricity is hampered by microscopic defects. Scientists around Dr. Gert-Jan Wetzelaer and Dr. Denis Andrienko of the Max-Planck-Institute for Polymer Research have now investigated how organic semiconductors can be designed such that the electric conduction is not influenced by these defects.

The basic principle of the first light bulb, invented by Thomas Edison in the 19th century, was quite simple: Electrons – negatively charged particles – flow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

2,000 atoms in two places at once

02.10.2019 | Life Sciences

'Poisoned arrowhead' used by warring bacteria could lead to new antibiotics

02.10.2019 | Life Sciences

Squid-inspired robots might have environmental, propulsion applications

02.10.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>