Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1 small step for neurons, 1 giant leap for nerve cell repair

09.10.2009
Scientists create nerve cell connections in vitro using artificial substances, a major advance towards nerve cell repair

The repair of damaged nerve cells is a major problem in medicine today.

A new study by researchers at the Montreal NeurologicaI Institute and Hospital (The Neuro) and McGill University, is a significant advance towards a solution for neuronal repair. The study featured on the cover of the October 7 issue of Journal of Neuroscience, is the first to show that nerve cells will grow and make meaningful, functional contacts, or synapses - the specialized junctions through which neurons signal to each other - with an artificial component, in this case, plastic beads coated with a substance that encourages adhesion, and attracts the nerve cells.

"Many therapies, most still in the conceptual stage, are aimed at restoring the connection between the nerve cell and the severed nerve fibres that innervate a target tissue, typically muscle," says Dr. David Colman, Director of The Neuro and principal investigator in the study. "Traditional approaches to therapies would require the re-growth of a severed nerve fibre a distance of up to one meter in order to potentially restore function. The approach we are using however bypasses the need to force nerve cells to artificially grow these long distances, and eliminates the demand for two neurons to make a synapse, both of which are considerable obstacles to neuronal repair in a damaged system."

"We are tackling this problem in an entirely new way, as part of the McGill Program in NeuroEngineering," says Dr. Anna Lisa Lucido, who conducted research for the study as part of her PhD research at The Neuro and is currently a post-doctoral fellow at UCSF. "This program, spearheaded by Dr. Colman, is a multi-disciplinary consortium that brings together the knowledge, expertise and perspectives of 40 scientists from diverse fields to focus on the challenge of neuronal repair in the central nervous system. The approach we have taken is to help healthy nerve cells form functional contacts with artificial substrates in order to create a paradigm that can be adapted to model systems in which neurons are damaged. That approach will be combined with strategies to encourage the outgrowth of damaged neuronal branches through which these connections, or synapses, are formed. It's a challenging endeavour, but the ability to trigger connections to form on command is a promising start. Our ultimate goal is to create a combined platform in which damaged cells could be encouraged to both re-grow and re-establish their functional connections."

The synapses generated in this study are virtually identical to their natural counterparts except the 'receiving' side of the synapse is an artificial plastic rather than another nerve cell or the target tissue itself. This study is the first, using these particular devices, to show that adhesion is a fundamental first step in triggering synaptic assembly.

"Even though components of synapses have been induced in similar earlier studies, their functionality was not proven. In order to assess function - that is transmission of a signal from the synapse, we stimulated the nerve cells with electricity, sending the signal, an action potential, to the synapse. By artificially stimulating nerve cells in the presence of dyes, we could see that transmission had taken place as the dyes were taken up by the synapses."

"We believe that within the next five years we will have a fully functional device that will be able to directly convey natural nerve cell signals from the nerve cell itself to an artificial matrix containing a mini-computer that will communicate wirelessly with target tissues," says Dr. Colman. These results not only provide a model to understand how neurons are formed which can be employed in subsequent studies but, provides hope for those affected and potentially holds promise for the use of artificial substrates in the repair of damaged nerves.

About the Montreal Neurological Institute and Hospital
Celebrating 75 years
The Montreal Neurological Institute and Hospital (The Neuro) is a unique academic medical centre dedicated to neuroscience. The Neuro is a research and teaching institute of McGill University and forms the basis for the Neuroscience Mission of the McGill University Health Centre. Founded in 1934 by the renowned Dr. Wilder Penfield, The Neuro is recognized internationally for integrating research, compassionate patient care and advanced training, all key to advances in science and medicine. Neuro researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders.

Anita Kar | EurekAlert!
Further information:
http://www.mcgill.ca
http://www.mni.mcgill.ca

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>