Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It's a trap! New laboratory technique captures microRNA targets

10.05.2012
Sanford-Burnham researchers develop a method called miR-TRAP, which allows scientists to better understand the roles microRNAs play in human development and disease

Human cells are thought to produce thousands of different microRNAs (miRNAs)—small pieces of genetic material that help determine which genes are turned on or off at a given time. miRNAs are an important part of normal cellular function, but they can also contribute to human disease—some are elevated in certain tumors, for example, where they promote cell survival.

But to better understand how miRNAs influence health and disease, researchers first need to know which miRNAs are acting upon which genes—a big challenge considering their sheer number and the fact that each single miRNA can regulate hundreds of target genes. Enter miR-TRAP, a new easy-to-use method to directly identify miRNA targets in cells.

This technique, developed by Tariq Rana, Ph.D., professor and program director at Sanford-Burnham Medical Research Institute (Sanford-Burnham), and his team, was first revealed in a paper published May 8 by the journal Angewandte Chemie International Edition.

"This method could be widely used to discover miRNA targets in any number of disease models, under physiological conditions," Rana said. "miR-TRAP will help bridge a gap in the RNA field, allowing researchers to better understand diseases like cancer and target their genetic underpinnings to develop new diagnostics and therapeutics. This will become especially important as new high-throughput RNA sequencing technologies increase the numbers of known miRNAs and their targets."

miRNAs block gene expression not by attaching directly to the DNA itself, but by binding to messenger RNA (mRNA), the type that normally carries a DNA recipe out of the nucleus and into the cytoplasm, where the sequence is translated into protein. Next, these RNAs are bound by a group of proteins called the RNA-induced silencing complex, or RISC. This blocks production of the protein encoded by that mRNA, an action that can have far-reaching consequences in the cell.

miR-TRAP is performed in three basic steps. Scientists 1) produce highly photoreactive probes by conjugating psoralen, a plant molecule that can be activated by light, to an miRNA of interest, 2) perform a long-wave UV photocrosslinking reaction, and 3) pull down RNA and analyze it by RT-qPCR. In other words, researchers zap cells with UV light, freezing the miRNA/mRNA duo in place. Then, after extracting the RNA from the cells, they can take a closer look at the sequence of the bound mRNA, revealing the miRNA's target gene.

Advantages of miR-TRAP

miR-TRAP is easier and more accurate than current methods of identifying miRNA targets for three main reasons. First, miR-TRAP can directly identify miRNA targets in live cells, under normal or disease conditions. Second, this technique can spot mRNA targets that are not only reduced by miRNAs, but also those whose translation into protein is repressed—targets that aren't normally picked up by other techniques, such as qPCR or microarray analysis. Third, miR-TRAP doesn't rely on antibodies, which can lead to nonspecific background signals and complicate data interpretation.

Putting miR-TRAP to the test, Rana and his team, including postdoctoral researcher Huricha Baigude, Ph.D., analyzed 13 predicted targets of two important microRNAs. The technique not only confirmed their known gene targets, but also revealed two novel targets.

"We're now applying these methods to identify miRNA targets in a number of disease models," Rana said. "And it's our hope that miR-TRAP will soon become common practice in many labs around the world."

This research was funded by the U.S. National Institutes of Health (NIH). The study's co-authors include Huricha Baigude, Ahsanullah, Zhonghan Li, Ying Zhou, and Tariq M. Rana.

About Sanford-Burnham Medical Research Institute

Sanford-Burnham Medical Research Institute is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. The Institute consistently ranks among the top five organizations worldwide for its scientific impact in the fields of biology and biochemistry (defined by citations per publication) and currently ranks third in the nation in NIH funding among all laboratory-based research institutes. Sanford-Burnham is a highly innovative organization, currently ranking second nationally among all organizations in capital efficiency of generating patents, defined by the number of patents issued per grant dollars awarded, according to government statistics.

Sanford-Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is especially known for its world-class capabilities in stem cell research and drug discovery technologies. Sanford-Burnham is a U.S.-based, non-profit public benefit corporation, with operations in San Diego (La Jolla), California and Orlando (Lake Nona) in Florida. For more information, please visit our website (www.sanfordburnham.org) or blog (http://beaker.sanfordburnham.org). You can also receive updates by following us on Facebook and Twitter.

Heather Buschman | EurekAlert!
Further information:
http://www.sanfordburnham.org

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>