Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Hub' of fear memory formation identified in brain cells

30.09.2008
A protein required for the earliest steps in embryonic development also plays a key role in solidifying fear memories in the brains of adult animals, scientists have revealed. An apparent "hub" for changes in the connections between brain cells, beta-catenin could be a potential target for drugs to enhance or interfere with memory formation.

The results are published online this week and appear in the October issue of Nature Neuroscience.

The protein beta-catenin acts like a Velcro strap, fastening cells' internal skeletons to proteins on their external membranes that connect them with other cells. In species ranging from flies to frogs to mice, it also can transmit early signals that separate an embryo into front and back or top and bottom.

During long-term memory formation, structural changes take place in the synapses – the connections between neurons in the brain, says Kerry Ressler, MD, PhD, associate professor of psychiatry and behavioral sciences at Emory University School of Medicine. Ressler is a researcher at Emory University's Yerkes National Primate Research Center, where the research was conducted, and a Howard Hughes Medical Institute investigator.

"We thought beta-catenin could be a hub for the changes that take place in the synapses during memory formation," says Ressler. "But because beta-catenin is so important during development, we couldn't take the standard approach of just knocking it out genetically."

He and graduate student Kimberly Maguschak used a variety of approaches to probe beta-catenin's role in fear memory formation, such as stabilizing the protein with a pulse of the psychiatric drug lithium and injecting a virus that could remove the gene for beta-catenin from brain cells.

If mice are electrically shocked just after they hear a certain tone, they gradually learn to fear that tone, and they show that fear by freezing.

To test beta-catenin's involvement in fear memory, Maguschak used a genetically engineered virus paired with mice that had the DNA around their beta-catenin genes modified. Once a cell is infected, the virus deletes the beta-catenin gene so that the cell can't make beta-catenin protein. She injected the virus into the amygdala, a part of the brain thought to be important for forming memories of emotionally charged events.

"We found that after beta-catenin is taken out, the mice can still learn to fear the shocks," says Maguschak. "But two days later, their fear doesn't seem to be retained because they spend half as much time freezing in response to the tone."

Beta-catenin appears to be turned on in the amygdala and involved in signaling during the learning process, Maguschak says.

"However, after the process of moving memories from short-term to long-term is complete, beta-catenin doesn't appear to be necessary anymore," she notes. "Injecting the virus after that point has no effect on the ability of the mice to express their fear memory."

Maguschak also found that lithium salts, when given to the mice before training, make them even more afraid of the tone two days later. Chemically, lithium inhibits an enzyme that usually targets beta-catenin for destruction, causing beta-catenin to become more active. She cautions that lithium is an imprecise tool for studying beta-catenin because it affects several enzymes in the brain.

"Psychiatrists have used lithium to treat mania and bipolar disorder for decades, but how it works is not well-understood," Ressler says. "Importantly, we gave the mice one acute dose of lithium, rather than letting it build to a stable level like in the clinical situation. It's not clear whether there is a connection between mood regulation and how lithium functions in our experiments with fear memory."

The authors suggest medications that inhibit beta-catenin could transiently interfere with memory formation after trauma, helping to prevent post-traumatic stress disorder. Conversely, drugs that enhance beta-catenin function within the brain might serve as new therapies to treating disorders of memory, such as Alzheimer's disease. Besides lithium, no drugs that target beta-catenin are available.

Ressler says his team's next step is to dissect the contribution of beta-catenin's different functions: cell adhesion and developmental signaling. He notes that when over-activated by genetic mutations, beta-catenin can drive tumor formation in several tissues, such as the colon, the skin and the kidney.

"It's possible we will see that a number of genes involved in cancer also are involved in learning and memory," he says.

Kathi Baker | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>